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PREFACE TO FIRST EDITION

The aim of this book is to describe as simply as possible the
fundamental principles and concepts of statistics. I hope that
it may be useful both to the mathematician who requires
an elementary introduction to the subject and to the scientist
who wishes to understand the theory underlying the statistical
methods which he uses in his own work. Most of the examples
are of a biological nature since my own experience and interests
lie in this field.

I am grateful to the Biometrika Trustees for permission to
reproduce Fig. 15 and the tables at the end of the book, and
to Professor E. W. Sinnott and the National Academy of Sciences
for permission to reproduce Fig. 23.

I wish to thank Mr. J. F. Scott for reading and criticising
the manuscript and Mrs. K. M. Earnshaw for assistance with
the typing. :
M. G. B.
Oxford, 1965

PREFACE TO SECOND EDITION

In this edition I have added a number of exercises and prob-
lems at the end of each chapter. The exercises are straightforward
and are mostly numerical, whereas the problems are of a more
theoretical nature and many of them extend and expand the
exposition of the text. The exercises should not present much
difficulty but the problems demand more mathematical maturity
and are primarily intended for the mathematician. However, I
recommend mathematicians to do the exercises first and to reserve
the problems until a second reading since it is important for
them to acquire an intuitive feeling for the subject before they
study it in detail.

Some of the exercises and problems are taken from the Pre-
liminary Examination in Psychology, Philosophy and Physiology
and from the Certificate and Diploma in Statistics of Oxford
University and I am grateful to the Clarendon Press for per-
mission to print them.

I have also taken the opportunity to rewrite the sections on
correlation in Chapters 5 and 12, and to correct a number of
misprints, for whose detection I am indebted to Professor P.
Armitage, Miss Susan Jennings, and a number of other readers.

M. G. B.
Oxford, 1966

CHAPTER 1]

THE TWO CONCEPTS OF PROBABILITY

“ But “ glory> doesw’t mean © a mice knock-down argu-
ment’,” Alice objected. ‘
(17 3
When 1 use a word,” Humpty Dumpty said, in
rather a scornful tone, * it means just what I choose
it to mean—neither more nor less.”
py o . .
The question is,’ said Alice, ** whether you can
ma‘IEe words mean so many different things.”
The question is,” said Humpty Dumpty, * which is
to be master—that’s all.”
Lewis Carroll: Through the Looking-glass

It is advisable in any subject to begin by defining the terms
wh.1§h are to be used. This is particularly important in prob-
al?ﬂlty theory, in which much confusion has been caused by
fm}ure to define the sense in which the word probability is
being '1.1s_ed. For there are two quite distinct concepts of
probability, and unless they are carefully distinguished fruit-
less controversy can arise between people who are talking
about different things without knowing it. These two con-
cepts are: (1) the relative frequency with which an event
occurs in the long run, and (2) the degree of belief which it is

_reasonable to place in a proposition on given evidence. The

first of these I shall call statistical probabilit

; > ty and the second
inductive probabzlfgy, following the terminology of Darrell Htrllﬂ'
(1960). We will now discuss them in turn. Much of this

~discussion, particularly that of the logical distinction between

the two concepts of probability, is based on the excellent
kaccount in the second chapter of Carnap (1950).

STATISTICAL PROBABILITY

The concept of statistical probability is based
ot on the lon
run stability of frequency ratios. Before giving a deﬁnitioﬁ
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I shall illustrate this idea by means of two examples, from a
coin-tossing experiment and from data on the numbers of
boys and girls born. )
yC'oin-tosgsing. No one can tell which way a penny will fall;
but we expect the proportions of heads and t?uls after a large
number of spins to be nearly equal. An experiment to demqn—
strate this point was performed by Kerrich while he was in-
terned in Denmark during the last war. He tossed a com
10,000 times and obtained altogether 5067 heads; thus at

1or
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Fic. 1. The proportion of heads in a sequence of spins of
a coin (Kerrich, 1946)

the end of the experiment the proportion of heads was -5967
and that of tails -4933. The behaviour of the proportion
of heads throughout the experiment is shown in Flg. 1. It
will be seen that it fluctuates widely at first but begins to set.tle
down to a more or less stable value as the number of spins
increases. It seems reasonable to suppose that the fluctuations
would continue to diminish if the experiment were continued
indefinitely, and that the proportion of heads vs'lould cluster
more and more closely about a limiting value wh1.ch wgul.d.be
very near, if not exactly, one-half. This hypothetical limiting
value is the (statistical) probability of heads. N

The sex ratio. Another familiar example of the sta’plhty of
frequency ratios in the long run is provided by registers of
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births. It has been known since the eighteenth century that in
reliable birth statistics based on sufficiently large numbers
there is always a slight excess of boys; for example Laplace
records that among the 215,599 births in thirty districts of
France in the years 1800-1802 there were 110,312 boys and
105,287 girls; the proportions of boys and girls were thus
512 and -488 respectively. In a smaller number of births
one would, however, expect considerable deviations from these
proportions. In order to give some idea of the effect of the size

TasLre 1

The sex ratio in England in 1956
(Source: Annual Statistical Review)

Regions of England ~ Sex ratio Rural districts of Dorset Sex ratio

Northern . -514  Beaminster -38
E. and W. Riding -513  Blandford 47
North Western -512  Bridport . -53
North Midland -517  Dorchester 50
Midland -514  Shaftesbury , 59
Eastern -516  Sherborne 44
London and S. Eastern 514 Sturminster 54
Southern -514  Wareham and Purbeck 53
South Western 513  Wimborne and Cranborne 54
Whole country 514  All R.D.% of Dorset 512

of the sample on the variability of the sex ratio I have calcu-
lated in Table 1 the proportions of male births in 1956 (a)
in the major regions of England, and (4) in the rural districts
of Dorsct. The figures for the major regions of England, which
are each based on about 100,000 births, range between -512
and -517, while those for the rural districts of Dorset, based on
about 200 births each, range between -38 and -59. The
larger sample size is clearly the reason for the greater constancy
of the former. We can imagine that if the sample were
increased indefinitely, the proportion of boys would tend to a
limiting value which is unlikely to differ much from -514,
the sex ratio for the whole country. This hypothetical limiting
value is the (statistical) probability of a male birth.
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Definition of statistical probability

A statistical probability is thus the limiting value of the
relative -frequency with which some event occurs. In the
examples just considered only two events were possible at
each trial: a penny must fall heads or tails and a baby must
be either a boy or a girl. In general there will be a larger
number of possible events at each trial; for example, if we
throw a die there are six possible results at each throw, if we
play roulette there are thirty-seven possible results (including
zero) at each spin of the wheel and if we count the number of
micro-organisms in a sample of pond water the answer can be
any whole number. Consider then any observation or experi-
ment which can, in principle at least, be repeated indefinitely.
Each repetition will result in the occurrence of one out of an
arbitrary number of possible outcomes or events, which will
be symbolised by the letters 4, B, C and so on. Ifin n repeti-
tions of the experiment the event 4 has occurred n(4) times,
the proportion of times on which it has occurred is clearly
n(A)/n, which will be denoted by p(4). In many situations
it is found that as the number of repetitions increases p(4)
seems to cluster more and more closely about some particular
value, as does the proportion of heads in Fig. 1. In these
circumstances it seems reasonable to suppose that this behaviour
would continue if the experiment could be repeated indefinitely
and that p(4) would settle down with ever diminishing fluctua-
tions about some stable limiting value. This hypothetical
limiting value is called the (statistical) probability of 4 and is
denoted by P(4) or Prob(A4).

Two important features of this concept of probability must
be briefly mentioned. Firstly, it is an empirical concept.

Statements about statistical probability are statements about

what actually happens in the real world and can only be
verified by observation or experiment. If we want to know

whether the statistical probability of heads is § when a par-
ticular coin is thrown in a particular way, we can only find -
out by throwing the coin a large number of times. Considera- -
tions of the physical symmetry of the coin can of course provide -
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good, a priori reason for conjecturing that this probability is
about %, but confirmation, or disproof, of this conjecture
can only come from actual experiment. ’ :
Secor_u.ily, we can never know with certainty the exact
probabl!lty of an event. For no experiment can, in practice
be continued indefinitely, since either the appa’ratus or the
experimenter will wear out sooner or later; and even if it
were possible to repeat the experiment for ever, we could never
reach the end of an endless sequence of rcla,tive frequencies
to find out Wwhat their limiting value is.* Tt follows that the
?bove. definition of statistical probability cannot be interpreted
in a literal, operational senge, Some authors, such as ‘]Ie)ﬂ're (]
'(1?61)’11 have concludt-zd that the concept of statistical probabilizfy
11:1 131;/; m(Iil and ??mngleSS; but the philosophical difficulties
: ning probability are no greater than those encountered
n trying to define precisely other fundamental scientific
concepts such as time and should not prevent us from
using this concept, whose meaning is intuitively clear. The
reader who wishes. to pursue this topic further is réferred

to the books of Braithwait 19 ;
Reichenbach (1949)., () von Mises (1957) and

InpucTive ProsapmLITy

. The second concept of § ility i

oo cond c : probability is that of the degree of
Vl;b.c_hef whlc.h 1t 15 rational to place in a hypothesis or ir;pg-
siuon on given evidence. J. S. Mill gives a very clear defini-

, O some-
. Every event is in itself
if we knew all, we should either know
happen, or positively that it will not.
$ means the degree of expectation of jts

c expecting it. . . ,
_certain, not probable:
positively that it will
But its probability to u
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occurrence, which we are warranted in entertaining by our
present evidence.” *

This concept of probability should be familiar to most
people; for, as Bishop Butler wrote, “To us, probability is
the very guide of life.” It is perhaps most clearly illustrated
in the deliberations of juries. The function of the jury in a
criminal prosecution is to listen to the evidence, and then to
determine the probability that the prisoner committed the
crime of which he is accused. If they consider the probability
very high they bring in a verdict of guilty; otherwise, a verdict
of not guilty. In a civil action, on the other hand, the jury, if
there is one, will find for the party which they consider to have
the higher probability of being correct in its assertions. The
probability which it is the function of the jury to assess is
clearly not a statistical probability; for each trial is unique and
cannot be considered as one out of a large number of similar
trials. What the jury does is to decide, after hearing the
evidence, what, as reasonable men, they ought to believe and
with what strength they should hold that belief. This concept
will be called inductive probability.

The essential difference between the two concepts of prob-
ability is that statistical probability is, as we have already
seen, an empirical concept while inductive probability is a
Jogical concept. Statements about inductive probability are
not statements about anything in the outside world but about
the logical relationship of partial implication between a propo-
sition or hypothesis in which we believe more or less strongly
and the evidence on which that belief is based. They therefore
belong to the branch of Logic called Inductive Logic which
concerns partial implication, just as Deductive Logic concerns
complete implication.

* Logic, Book 3, Chapter 18. Itis interesting to note that in the first
edition Mill adopted a frequency definition of probability. (* Why,” he
asks, “ in tossing up a halfpenny, do we reckon it equally probable that we
shall throw cross or pile? Because we know that in any great number of
throws, cross and pile are thrown equally often; and that the more throws
we make, the more nearly the equality is perfect.””) In later editions this
frequency approach is explicitly rejected and the definition of inductive

probability quoted above is substituted for it. Mill did not realise that the
two concepts of probability are equally valid and not incompatible.
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The non-empirical nature of inductive probability is shown
clearly by the fact that if we wish to know the degree of belief
we are entitled to place in a hypothesis on the evidence to
hand all we can do is to think about the problem; we are
debarred from collecting fresh evidence since we should then
pave a new probability based on different evidence. It is
important to remember that inductive probabilities depend on
the evidence and change when new evidence is obtained. For
example, it is now known with virtual certainty that the Pilt-
down skull is a fake, and consists of an ancient human skull
together with the lower jaw of a chimpanzee coloured to
resemble it (Weiner, 1955); but before this was proved it was
quite reasonable to believe the skull to be genuine and to try
to fit it into the general scheme of human evolution,

We have seen, therefore, that there are two distinct concepts
of probability; we must now consider how these concepts
are to be used in the theory of statistics. When probability
occurs as part of a scientific or statistical hypothesis it is clearly
being used in its empirical, frequency sense; for such hypotheses
are by nature empirically testable. For example, when we
ask, “ Is this coin unbiased? ”, that is to say, ““Is the prob-
ability of heads £?”, we are using the statistical sense of
probability; for the question can only be answered by spinning
the coin a large number of times. When, however, we come to
statistical inference and ask questions like, ““ Given that this
co@n has shown 53 heads and 47 tails in 100 throws, is this good
fmdence for believing it to be unbiased? ”, we are using the
idea of rational degree of belief, and the answer might be,
“There is a high probability (in the inductive sense) that
the .probability of heads (in the statistical sense) is 3 7.
Again, it is quite clear that the probabilities which occur in
Mendelian genetics are statistical probabilities; but if we were
to ask, ““ How strongly do Mendel’s results confirm his theory?”
we should be seeking information about the rational degree of
belief to be placed in that theory.

It wou‘ld seem, therefore, that both concepts of probability
have their part to play in the theory of statistics, statistical
prob?bility when we are formulating statistical hypotheses
and inductive probability when we make statistical inferences
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about the adequacy of such hypotheses to fit the facts. How-
ever, orthodox statistical opinion declines to use inductive
probabilities in the latter context on the ground that they are
not quantifiable and so cannot be employed in 2 mathematical
argument, and the usual methods of statistical inference such
as significance tests and confidence intervals are based entirely
on the concept of statistical probability. We must, therefore,
now consider why it is difficult to express inductive probabilities
numerically.

THE MEASUREMENT OF INDUCTIVE PROBABILITIES

Most attempts to construct a numerical scale of inductive
probabilities, with 0 standing for impossibility and 1 for logical
certainty, start from the Principle of Indifference, which states
that two events are equally probable if we have no reason to
suppose that one of them will happen rather than the other.
This principle was formulated as follows by Laplace in 1814:

“The theory of chances consists in reducing all events of
the same kind to a certain number of cases equally possible,
that is, such that we are equally undecided as to their existence;
and in determining the number of these cases which are favour-
able to the event of which the probability is sought. The ratio
of that number to the number of all the possible cases is the
measure of the probability; which is thus a fraction, having for
its numerator the number of cases favourable to the event,
and for its denominator the number of all the cases which are
possible.”

The Principle of Indifference seems at first sight very
plausible. If we know that one of two events must occur but
have no reason to suppose that it will be one of them rather than
the other, what else can we do but attribute a probability of
4 to each of them? For it would clearly be illogical to attri-
bute a higher probability to one of them than to the other.
Once we admit that all inductive probabilities can be measured
we are driven to this view. There are, however, two strong
objections to it as a basis for constructing a scale of probabilities.

In the first place the Principle of Indifference can only be
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applied when the alternatives can be split up into a number of
equally possible cases; this is a severe limitation on its useful-
ness. Suppose for instance that we are considering the throw
of a die. "If we are given a die about which nothing is known
except that it appears to be symmetrical, we can argue that
each of the faces has an equal probability of being thrown of
4. But suppose that we are given an asymmetrical die; we
should probably be able to deduce that some of its faces were
more likely to occur than others, though we could not say
by how much. Or suppose we are given an apparently
symmetrical die and find that in 100 throws six has occurred
22 times. This has clearly increased our belief that six will
occur on the next throw; but by how much? Or again,
consider a horse race. We would certainly not consider that
the horses were all equally likely to win and it is difficult to
see how the events could be reduced to a number of equally
possible cases. The Principle of Indifference is thus of very
limited applicability.

The second objection to this principle is that even when it
can be applied it leads to inconsistencies and paradoxes.
Suppose that we are given a glass containing a mixture of
wine and water, and that all we know about the mixture is
that the proportion of water to wine is somewhere between 1:1
and 2:1; then we can argue that the proportion of water to
wine is as likely to lie between liand 1} as it is to lie between
1} and 2. Consider now the ratio of wine to water. This
quantity must lie between } and 1, and we can use the same
argument to show that it is equally likely to lie between } and
2 as it is to lie between £ and 1. But this means that the
water to wine ratio is equally likely to lie between 1 and 1}
as it is to lie between 1} and 2, which is clearly inconsistent
with the previous calculation.

This paradox, known under the general name of Bertrand’s
paradox, depends on the fact that we were considering a
quantity that could vary continuously between certain limits.
However, similar inconsistencies arise even in the case of dis-
crete quantities. Consider, for example, the following paradox
due to d’Alembert. Suppose we toss a coin twice; what is the
probability of obtaining two heads? According to the orthodox
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analysis there are four equally possible cases: HH, HT, TH
and TT; the probability of two heads is therefore 4. But
d’Alembert argued that HT and TH both led to the same result
and should therefore only be counted once; hence, he said,
the probability of two heads is not } but 3. Now it can be
shown that if we adopt a frequency approach, the (statistical)
probability of throwing two heads in succession is } if the
coin is unbiased. But what objection can be advanced against
d’Alembert’s analysis if we are arguing entirely from the
Principle of Indifference? *

The force of these objections to the Principle of Indifference
is now widely recognised, and some authors have abandoned
it in favour of another method of measuring inductive prob-
abilities which was first suggested by Ramsey (1931). Suppose
that I want to find out how strongly you believe that a certain
horse will win the Derby. I can do this, it is suggested, by
offering you a series of bets and seeing which of them you accept.
For example, if the horse is an outsider, it is likely that you
would reject an offer of 10 to 1, but you might well accept
an offer of 100 to 1; somewhere between these two limits
there must be a line dividing bets which you would accept
from bets which you would not accept. If this marginal bet
is 50 to 1 then your degree of belief in the horse’s chances of
winning the Derby is taken to be 1/51.

This method can be elaborated so as to avoid difficulties
arising from the marginal utility of money (a shilling is worth
more to a beggar than to a millionaire) and from the fact that
betting may in itself be pleasant or unpleasant. There are,
however, two fundamental objections to it. The first is that,
even if you can be forced to say that you would accept a bet
at odds of 50 to 1 but that you would not accept one at odds of
49 to 1, it still seems unnatural to try to define the position
of the dividing line precisely. But the more serious objection
is that this method leads not to an objective scale measuring

* Objection can also be raised against the orthodox analysis on the |
grounds that the four cases are not equally possible. For if the result of the
first throw is heads, this provides some information about the coin and

should raise, even though slightly, our expectation that the second throw
will be heads rather than tails.
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how strongly you ought to believe in the horse’s chances of
success but to a subjective, psychological scale measuring your
actual degree of belief. It is possible, and indeed probable,
that two people on the same evidence will have quite different
betting propensities. Such a psychological scale varying from
one person to another is of little use in scientific discussion
in which the scientist must persuade others to believe what
he himself believes.

It has been reluctantly concluded by most statisticians
that inductive probability cannot in general be measured and,
therefore, cannot be used in the mathematical theory of
statistics. This conclusion is not, perhaps, very surprising
since there seems no rcason why rational degrees of belief
should be measurable any more than, say, degrees of beauty.
Some paintings are very beautiful, some are quite beautiful
and some are ugly; but it would be absurd to try to construct
a numerical scale of beauty on which the Mona Lisa had a
beauty-value of ‘96! Similarly some propositions are highly
probable, some are quite probable and some are improbable;
but it does not seem possible to construct a numerical scale of
such (inductive) probabilities. A full and most readable
account of the problem of measuring such probabilities will be

found in Keynes (1921).

1
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CHAPTER 2

THE TWO LAWS OF PROBABILITY

We saw .in the last chapter that there are two concepts of
probability but that only the first of them, statistical probability,
is capable of being expressed quantitatively. The rest of this
book is concerned with the mathematical theory of statistics
and consequently with statistical rather than inductive prob-
ability; probability will, therefore, be understood to mean
statistical probability unless the contrary is stated.

In this chapter, we shall consider the fundamental mathe-
matical properties of probability, which can be derived on
the frequency interpretation from the consideration that what
holds for a relative frequency must also hold in the limit for a
probability. Thus a relative frequency must necessarily be a
number between 0 and 1; hence so must a probability.
Furthermore an event which cannot occur will have a prob-
ability of 0 while an event which must occur will have a
probability of 1; for example, the probability that a baby will
be either'a boy or a girl is 1 since one or other of these events
must happen. We shall now consider in turn the two main
laws on which the theory of probability is based, the laws of
addition and multiplication.

Tue LAaw oF ADDITION

The law of addition of probabilities states that if 4 and B
are mutually exclusive events, that is if they cannot both occur
together, then the probability that either 4 or B will occur is
equal to the sum of their separate probabilities: in symbols,

P(4 or B) = P(4)+P(B).

This follows from the fact that, if 4 and B are mutually ex-
clusive, the number of times on which either 4 or B has occurred
is the number of times on which 4 has occurred plus the
number of times on which B has occurred; the same must

12

2., THE TWO LAWS OF PROBABILITY I3

therefore be true of the corresponding proportions and so,
as the number of observations increases, of their limiting values
or probabilities. This law can be extended to any number of
events, provided they are all mutually exclusive.

For example, Table 2a shows the numbers of births in
England and Wales in 1956 classified by (¢) sex and (b)
whether liveborn or stillborn; the corresponding relative

TABLE 2é

Numbers of births in England and Wales in 1956 by sex and whether
live- or stillborn. (Source: Annual Statistical Review)

Liveborn Stillborn Total
Male 359,881 (4) 8,609 (B) 368,490
Female 340,454 (C) 7,796 (D) 348,250
Total 700,335 16,405 716,740
TABLE 26

Proportion of births in England and Wales in 1956 by sex and whether
live- or stillborn. (Source: Annual Statistical Review)

Liveborn Stillborn Total

Male -5021 <0120 -5141
Female 4750 <0109 -4859
Total 9771 -0229 10000

frequencies are given in Table 2b. The total number of births
is large enough for these relative frequencies to be treated for all
practical purposes as probabilities. There are four possible
events in this double classification, male livebirth, male still-
birth, female livebirth and female stillbirth, which will be
represented by the letters 4, B, € and D; the compound events
‘ Male birth*.and ° Stillbirth * will be represented by the letters
M and §. Now a male birth occurs whenever either a male
livebirth or a male stillbirth occurs, and so the proportion
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of male births, regardless of whether they are live- or stillborn,

is. equal to the sum of the proportions of these two types of
birth; that is to say,

p(M) = p(4 or B) = p(4)+p(B) = -5021 - -0120 — -5141

where p(4) means the proportion of times on which the event
4 has occurred. Similarly, a stillbirth occurs whenever either
a male stillbirth or a female stillbirth occurs and so the pro-
portion of stillbirths, regardless of sex, is equal to the sum of the
proportions of these two events:

p(8) = p(B or D) = p(B)+p(D) = -0120--0109 — -0229.

It is important to remember that the law of addition only
hold's when the events are mutually exclusive. Thus the pro-
portion of times on which either a male birth or a stillbirth
occu.rrcd is not -51414--0229 = -5370. To calculate this pro-
portion correctly we note that a male birth or a stillbirth occurs
whenever either a male livebirth or a male stillbirth or a female
stillbirth occurs, and then add together the proportions of
these three events:

p(MorS) = p(d or Bor D)
= p(4) +p(B)+p(D) = -5021+-0120---0109 = -5250.

What went wrong in the first calculation is that the events
¢ Male birth’ and ¢ Stillbirth’ are not mutually exclusive since
they‘ both occur when a boy is stillborn. In adding their pro-
portions we have, therefore, counted the male stillbirths twice
1nste:31d of once; the correct answer can be obtained by sub-
tracting the relative frequency of this joint event (-5370 —
0120 = -5250).

The general rule, which can be demonstrated by a similar
argument, is that if 4 and B are any two events, not necessarily
mutually exclusive, the probability that 4 or B will occur is
the sum of their separate probabilities minus the probability
that they both occur: in symbols,

P(A4 or B) = P(4)+P(B) —P(4 and B).
This rule may perhaps be made plainer by the following

diagram in w}}ich the points represent the possible outcomes
of some experiment each of which has a certain probability
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attached to it. The probability that the event 4 will occur
is the sum of the probabilities of the points in 4, and likewise
for B; similarly the probability that either 4 or B will occur
is the sum of the probabilities of points which lie in either
A or B. Now if we add the probabilities of 4 and B we shall
have counted the probabilities of all those points which are
common to both 4 and B twice, and so

P(A)+P(B) = P(A4 or B)+P(4 and B)

from which the general law of addition follows. If A4 and B are
exclusive they will have no points in common; in this case

Fic. 2. Diagram to illustrate the general law
of addition of probabilities

P(4 and B) = 0 and we again have the original form of the
law. The general form of the law of addition can be extended
to more than two non-mutually-exclusive events (see Problem
2.1) but the formulae become rather complicated and it is
usually easier to solve problems of this sort by decomposing
the events into mutually exclusive components.

Tue Law oF MULTIPLICATION

The law of multiplication of probabilities states that if
A4 and B are two events, then the probability that both 4 and B
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will occur is equal to the probability that 4 will occur multi-
plied by the conditional probability that B will occur given
that 4 has occurred, or in symbols

P(4 and B) = P(4) x P(B | 4).

This law introduces the new and important concept of con- .

ditional probability which must now be considered.

The conditional probability of an event B given another
event A, written P(B | 4), is the probability that B will occur
if we consider only those occasions on which 4 also occurs;
it is thus the limiting value of the proportion n(4 and B)/n(4),
where n(4 and B) is the number of times on which both 4
and B have occurred and n(4) is the number of times on which
4 has occurred. In Table 22 on p. 13, for example, if M
represents a male birth and § a stillbirth, »(M and S)/n(M)
= 8609/368,490 = -0234; this figure is the proportion of
males who are stillborn and will, as the sample size increases,
tend to a limiting value which is the probability of stillbirth
in males. The corresponding proportion of stillbirths among
females is 7796/348,250 = -0224.

These figures should be contrasted with the overall, or
unconditional, proportion of stillbirths, which is -0229. It will
be observed that the conditional proportion of stillbirths among
boys is slightly higher than, and the proportion among girls
slightly lower than, the overall proportion. The difference is
small, but a test of significance indicates that it represents a
real difference in the corresponding probabilities (see Chapter
9, pp. 145 and 161); it can be concluded that sex and still-
birth are statistically dependent, that is to say that the sex of an
infant has an effect, albeit a small effect, on its chance of
being stillborn. This conclusion is confirmed from figures in
other years and in other countries; it is in fact found that
death rates at all ages are higher in men than women.

When the conditional probability of B given 4 is equal to
the unconditional, or absolute, probability of B the two events
are said to be statistically independent. This means that the
occurrence of 4 does not alter the probability that B will occur.
We might imagine, for example, that if we threw two dice
simultaneously they would be independent of each other; for
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it is difficult to see how the result on one die could be affected
by what happened on the other unless they were physically
connected in some way. This supposition is confirmed by
experience, as we shall see in the next section.

We now return to the law of multiplication. Ifin nrepetitions
of an experiment the event 4 has occurred n(4) times and the
double event 4 and B has occurred n(4 and B) times, then
it is an algebraical identity that

n(d and B)  n(4) ><n(A and B)

n n - n(4)

Now the left hand side of this identity is the proportion of
times on which both 4 and B have occurred, the first term on
the right hand side is the proportion of times on which 4 has
occurred and the second term on the right hand side is the
proportion of times on which B has occurred given that A4
has occurred. For example, the proportion of male stillbirths
in Table 26 on p. 13 is -0120, the proportion of male births is
5141 and the proportion of stillbirths among the males is
‘0234; it is easy to verify that -0120 = -5141x-0234. As the
number of observations increases these proportions tend to the
corresponding probabilities, and so

P(A and B) = P(A) x P(B | 4).
If A4 and B are statistically independent, P(B | 4) = P(B)

and the law of multiplication takes the simple form

P(A and B) = P(d) x P(B).

For example, if we throw two unbiased dice, that is to say
two dice whose six faces have the same probability of occurring,
the probability of throwing two sixes is 3x3 =45 It
is, however, important to remember that this is a special
case of the law of multiplication which is only true when the
events are independent.

We shall now consider some applications of these two laws

~ of probability, first in games of chance based on the throwing

of dice and then in the Mendelian theory of heredity.
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PROBABILITY AND DICE

The theory of probability arose in the seventeenth century
from interest in games of chance. Many of these games were
played with two dice, and one of the first prf)blems which
arose was to determine the frequencies with which the clev.en
possible scores between 2 and 12 should occur when two dice
are thrown simultaneously.

Before answering this question we shall consider some
actual data. Table 3 shows the results of 20,000 throws

TasBLE 3

The results of 20,000 throws with two dice (data from
Czuber, 1903)

White die .
1 2 3 4 5 6  Total Proportion
1 547 587 500 462 621 690 3407 -170
o 2 609 655 497 535 651 684 3631 -182
G 3 514 540 468 438 587 629 3176 -159
T 4 462 507 414 413 509 611 2916 -146
K5 551 562 499 506 658 672 3448 -172
6 563 598 519 487 609 646 3422 -171
Total 3246 3449 2897 2841 3635 3932 20,000 1-000

Proportion 162 -172 -145 -142 -182 -197  1-000

with two dice, one white and one red, made by the Swiss
astronomer Wolf in 1850. It will be seen from the marginal
totals that both these dice were considerably biased. They both
show a deficiency of threes and fours, and the white die also
has an excess of fives and sixes at the expense of ones and twos.
In seeking an explanation of this bias we must recall that dice
are so constructed that opposite faces add up to 7, i.c. 1 a_nd 6,
2 and 5, 3 and 4, are opposite each other. Thus a deficiency
of threes and fours and an excess of the other numbers could be
produced by a die which was not a perfect. cube but was
elongated in the three-four axis; the construction of false dice
was well understood as far back as the sixteenth century, al:ld
such dice were called barred quater-treys (other varieties
were fullams, loaded with lead, and high- and low-men, which
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were incorrectly numbered). The excess of 6 over 1, and to
a lesser extent of 5 over 2, in the white die could be caused
by the lightness of the 5 and 6 faces due to the hollowing
out of the pips in the die; but it would be rash to be too certain
about the appearance of dice which have long since perished.
These figures do show, however, that one cannot assume that
real dice are completely unbiased, although most data show
considerably less bias than do Wolf’s.

Despite their bias, however, the two dice are statistically
independent of each other. For example, the proportion of
times that the red die was 1 given that the white die was 2 is
587/3449 = -170 which is the same as the overall proportion
of times that the red die was 1. Similarly, the proportion of
times that the white die was 4 given that the red die was 6 is
487/3422 = -142 which is the same as the overall proportion
of times on which the white die was 4. The reader should make
some more calculations of this kind to demonstrate that the
conditional proportions are in all cases nearly the same as the
corresponding marginal proportions (see Exercises 2.1 and 9.9).

We now return to the problem of determining the frequencies
with which the eleven possible scores between 2 and 12 should
occur when two dice are thrown simultaneously. We shall
suppose that the dice are unbiased and independent. In
practice, as we have just seen, the assumption of independence
is likely to be exactly true but the assumption of lack of bias
can only be regarded as an approximation to the truth. On
these assumptions the probability of obtaining a particular
result, such as that the first die is 3 and the second 5, is, by the
law of multiplication, 1/36. To calculate the chance of throw-
ing a particular sum such as 8 we therefore simply count the
number of ways in which that sum can be thrown and divide
by 36 (by the law of addition); for example, 8 can be thrown
in five ways (2—6, 3—5, 4—4, 5—3 and 6—2), and the
probability of its occurrence is therefore 5/36 = -139. The
probability of obtaining other sums is calculated in exactly
the same way and is set out in Table 4 together with the
observed proportions calculated from Wolf’s data in Table 3.

It will be seen that there is quite good agreement despite the
bias of Wolf’s dice.
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TaBLE 4

The probability of throwing different sums with two dice

No. of ways Proportion

Sum of throwing Probability (Wolf’s data)
2 1 1/36 = -028 -027
3 2 2/36 = -056 -060
4 3 3/36 = -083 -083
5 4 4/36 = ‘111 -098
6 5 5/36 = 139 -134
7 6 6/36 = -167 -166
8 5 5/36 = -139 -139
9 4 4/36 = 111 -108
10 3 3/36 = -083 088
11 2 2/36 = -056 -064
12 1 1/36 = -028 -032
Total 36 36/36 = 1-000 1-000

It should be noted that throws such as 4—6 and 6—4 must
be counted separately since they represent different events
which can be distinguished if, for example, the dice are
coloured differently. The probability of throwing a four and
a six with two dice, without specifying which die is the four,
is therefore 2/36 since it can happen in two distinct ways;
on the other hand the probability of throwing two fives is 1/36
since it can only happen in one way. As one of Damon
Runyon’s characters says: “ Two fives is the hard way to
make a ten with the dice.” This point caused some difficulty
in the early history of probability, and there is an interesting
passage about it in the chapter on hazard in The Compleat
Gamester by Charles Cotton (minor poet and part author of
The Compleat Angler), which was first published in 1674. Cotton

writes:

“ Now six and eight one would think should admit of no
difference in advantage with seven, but if you will rightly
consider the case, and be so vain to make trial thereof, you will
find a great advantage in seven over six and eight. How can
that be you will say, hath not six, seven and eight equal
chances? For example, in six, quater deuce
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and two treys; in eight, six deuce, cinque trey, and two
quaters, and hath not seven three as aforesaid? It is confest;
but pray consider the disadvantage in the doublets, two treys
and two quaters, and you will find that six deuce is sooner
thrown than two quaters, and so consequently, cinque Ace
or quater deuce sooner than two treys: I saw an old rook once
take up a young fellow in a tavern, upon this very score:
the bargain was made that the rook should have seven always
and the young gentleman six, and throw continually; agreed
to play they went, the rook got the first day ten pound, the next
day the like sum; and so for six days together losing in all
threescore pounds; notwithstanding the gentleman, I am
confident, had square dice, and threw them always himself.”

We will now use the information in Table 4 to calculate
the chance of winning at craps. Craps is a simplified version
of the old game of hazard, about which Charles Cotton was
writing, and which was probably introduced into Europe from
the East during the Crusades; one derivation of the word is from
the Arabic for a die, * Al zhar ’. Craps is played between two
players, one of whom, the thrower, throws two dice. If the first
throw is 7 or 11 (a natural) the thrower wins immediately;
if it is 2, 3 or 12 (craps, which was called ¢ crabs ’ in hazard),
he loses immediately; if it is any other number he goes on
throwing until either the same number or 7 occurs. If 7
occurs before the number he first threw he loses; otherwise,
he wins,

The thrower’s probability of winning obviously depends on
the first throw. Thus if the first throw is 2 or 3, he loses
immediately; if the first throw is 4, the probability that he
will win, that is to say that he will throw 4 again before he
throws 7, is 1/3 since we find from Table 4 that sevens occur
twice as often as fours; similarly if the first throw is 5 the
probability that he will win is 4/10; and so on. To calculate
the overall probability of winning we must multiply these
conditional probabilities by the probability of making the first
throw in question and add them all up. The answer is
1 3.1, 4 4 1

X=-+ XlO +...+%><0 = -4930.

2
—X04+ = X0
36 +36X +36 3 36
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'The thrower is thus at a slight disadvantage. This is the
reason why the player and not the bank throws the dice when
craps is played in casinos. An empirical investigation has
shown that in 9900 games of craps the thrower won 4871 times
and lost 5029 times; the proportion of wins was thus -4920,

in excellent agreement with the theoretical calculation (Brown,
1919).

MEenpeL’s Laws oF HEREDITY

As a biological illustration of the laws of probability we shall
consider the classical experiments of Gregor Mendel (1822-
1884) on the genetics of the edible pea. In these experiments,
which were carried out in the gardens of the monastery in
Brinn (Brno) of which he was a member and later Abbot,
Mendel began by crossing two pure lines which differed in a
single contrasting character, such as a variety with purple
and onc with white flowers or a tall with a dwarf variety.
He knew that these plants belonged to pure, inbred lines
because the pea is normally self-fertilising. Mendel considered
seven such characters altogether, and found that in every case
the resulting hybrids resembled one of the parents; for ex-
ample, all the hybrids from the cross of purple-flowered with
white-flowered peas had purple flowers, and all the hybrids
from the tall xdwarf cross were tall. Mendel called the

TABLE 5

Mendel’s data on the plants bred from the hybrids. The dominant
character is listed first in each case.” (Source: Bateson, 1909)

No. of No. of Proportion

Character dominants recessives of dominants

Round ». wrinkled (seeds) 5,474 1,850 747
Yellow v. green (seeds) 6,022 2,001 -751
Purple ». white (flowers) 705 224 -759
Smooth v. constricted (pods) 882 299 747
Axial v. terminal (flowers) 651 207 -759
Green v. yellow (unripe pods) 428 152 -738
Tall . dwarf (stem) 787 277 -740

Total 14,949 5,010 749
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character which appeared in the hybrids the dominant character
and the one which apparently disappeared the recessive char-
acter. However, when these hybrids were allowed to self-
fertilise the recessive character reappeared; in fact # of the
resulting plants had the dominant and } the recessive char-
acter. His actual results are shown in Table 5.

It should be noted that this Mendelian proportion of }
is a (statistical) probability. Mendel himself sums this up by
saying:

“These [first] two experiments are important for the
determination of the average ratios, because with a smaller
number of experimental plants they show that very consider-
able fluctuations may occur. . . . :

‘“ The true ratios of the numbers can only be ascertained by
an average deduced from the sum of as many single values
as possible; the greater the number, the more are merely
chance effects eliminated.”

Mendel explained his results by supposing that each of the
seven contrasting characters was controlled by a pair of
hereditary units or genes and that any plant contained two of
these genes for each character, one derived from cach of its
parents. Let us consider the inheritance of flower colour
as an example. If we denote the gene for purple flowers by P
and that for white flowers by p, then a particular plant can
have one of the three possible combinations or genotypes:
PP, Pp or pp. When two pure lines were crossed the mating
was of the type PP X pp, and all the resulting plants had the
genotype Pp since they received a P gene from the first and a
p gene from the second parent. In order to explain why all
these plants had purple flowers like the PP parent we must
suppose that plants with either of the two genotypes PP or be
have purple flowers; only pp plants have white flowers. This
is quite easy to understand if we suppose that the P gene acts
by catalysing the formation of a purple pigment; its effect
will be the same whether it is present in single or in double
dose.

Let us now see what happens when the Pp hybrids are
allowed to self-fertilise. The mating is of the type Pp X Fp.
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In this case pollen cells containing the P and p gene will be
produced in equal quantities, and likewise for the egg cells.
Hence, if pollen and egg cells unite at random, that is to say
independently of the gene which they contain, the following
unions will occur with the same probability of $ X} =

Pollen Egg cell Offspring

P x P = PP
P x p = Pp
p X P = Pp
p X p = pp

Thus the genotypes PP, Pp and pp will occur in the offspring
with probabilities }, 4 and %, and so three-quarters of them
will on the average have purple and one-quarter white flowers.

Mendel next proceeded to see what happened when plants
differing in two contrasting characters were crossed. He
therefore crossed a pure line having round, yellow seeds
with a pure line having wrinkled, green seeds. All the resulting
hybrids had round, yellow seeds, confirming his previous result
that round seeds were dominant to wrinkled seeds and yellow
seeds to green. When these hybrids in their turn were self-
fertilised the results shown in Table 6 were obtained. The

TABLE 6

Mendel’s data on the joint segregation of seed colour and
shape. (Source: Bateson, 1909)

Yellow . Green Total
Round 315 108 423
Wrinkled 10,1 . 32 133
Total 416 140 556

proportion of round seeds is\ 423/556 = +761, and the pro-
portion of yellow seeds 416/556 = -748, both near enough the
theoretical value of -75. Furthermore we find that the pro-
portion of round seed among the yellow seeds is 315/416 =
-757, and the proportion of round seed among the green
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seeds is 108/140 = -771, which are within errors of sampling
the same as the overall proportions. We conclude that the two
characters behave independently, that is to say that the colour
of the seed does not affect its chance of being round or wrinkled,
and vice versa; this is known as Mendel’s law of independent
assortment.

Mendel did similar experiments, on a smaller scale, on
several other characters; in each case he found independent
assortment. However, when genetic work was resumed in
1900, it soon became clear that there were exceptions to this
rule. The data in Table 7 come from a similar experiment

TaBLE 7

The joint segregation of flower colour and pollen shape
in the sweet pea (Bateson, 1909)

Purple-flowered Red-flowered Total

Long pollen 1528 117 1645
Round pollen 106 381 487
Total 1634 498 2132

on two factors (1) purple ». red flower, and (2) long ». round
pollen, in the sweet pea. Both factors give good 3:1 ratios when
considered separately, but they are not independent; the pro-
portion with long pollen is considerably larger among the

- purple plants than among the red ones. The reason for the

dependence of the two characters was not understood until it
was discovered that the genes are carried on rod-shaped bodies
called chromosomes in the cell nucleus. If the genes for two
different characters are carried on different chromosomes
they will assort independently; if, on the other hand, they are
carried in different positions on the same chromosome they will
tend to be linked together, as are flower colour and pollen
shape in the sweet pea. The investigation of linkage and the
consequent construction of chromosome maps form an
important part of modern genetics; a fuller account will be
found in any textbook on genetics.
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Exercises

2.1. In Table 3 on p. 18 find the conditional proportion of (a) 3 on red
die given 6 on white die, (b) 5 on white die given 4 on red die, and compare
them with the corresponding marginal proportions. '

2.2. Find the probability that the sum of the numbers on two unb.iased
dice will be even (4) by considering the probabilities that the individual

dice will show an even number, (4) by considering the probabilities in
Table-4 on p. 20.

2.3. Find the probabilities of throwing a sum of 3, 4, ..., 18 with three
unbiased dice. (This problem was considered by Galileo.)

2.4. In 1654 the Chevalier de Méré, a well-known gambler and an
amateur mathematician, put a problem to Pascal which gave rise to a
famous correspondence between the latter and Fermat. De Mérés
problem was that he had found by calculation that the probability of
throwing a six in 4 throws of a die is slightly greater than 4, while the
probability of throwing double sixes in 24 throws of two dice is slightly
less than 4; it seemed self-evident to de Méré that these probabilities
should be the same and he called the result “‘ a great scandal which made
him say haughtily that the theorems were not consistent and that the
arithmetic was demented > (Smith, 1929). Repeatde Méré’s calculations.
(It is stated in many books that de Méré had noticed this very slight

inequality in the chancesin actual play. There is no basis for thisimprobable
story.)

2.5. Three men meet by chance. What are the probabilities that ()
none of them, (b) two of them, (¢) all of them, have the same birthday?
[P. P. P. Hilary, 1965].

2.6. In a certain survey of the work of chemical research workers, it was
found, on the basis of extensive data, that on average each man required
no fume cupboard for 60 per cent of his time, one cupboard for 30 per
cent and two cupboards for 10 per cent; three or more were never
required. Ifa group of four chemists worked independently of one another,
how many fume cupboards should be available in order to provide adequate
facilities for at least 95 per cent of the time? [Certificate, 1959].

2.7. A yarborough at whist or bridge is a hand of 13 cards containing no
card higher than 9. It is said to be so called from an Earl of Yarborough

who used to bet 1000 to 1 against its occurrence. Did he have a good
bet?
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Problems

2.1. For an arbitrary number of events, E,, E,,

...y E,, the general law
of addition states that

P(E,or Eyor...or E,)=ZE P(E;)— X P(E&E;)+ L P(E,&E,&E,
i i<j i<j<k
~ . (—)*1P(E, & E,&...&E,).
Prove this formula by induction. (The * or ** is inclusive not exclusive.)

2.2. E,, E,, ..., E, are events; P is the probability that at least one of
them occurs. Prove that

TPE)—- I PE; & E)gPK T P(Ey.
i t<j i

An unbiased roulette wheel has 37 cups. What is the approximate
probability that in 400 spins of the wheel there will be at least one cup
which the ball never occupies? [Diploma, 1962]

2.3. An arbitrary number of events are said to be pairwise independent if
P(E&E,) == P(E,) . P(E;) for all i # j.
They are said to be mutually independent if, in addition,
P(E&E&E,) == P(E)) . {’(E,—) P(Ey)foralli+£j#k

P(F,&E, . &E,) = P(EI:) .P(E,) ... P(E,).

Show that pairwise independence does not imply mutual independence by
supposing that two unbiased dice are thrown and considering the three

events, odd number on first die, odd number on second die, odd sum on
two dice.

2.4. Suppose that a genetic character is determined by a single pair of
genes A and B so that there are three genotypes AA, AB and BB whose
frequencies are x, y and z. Write down the expected frequencies of the
different mating types, AAXAA, AAXAB, and so on, under random
mating and hence show that the expected frequencies of these genotypes
in the next generation under random mating are 2, 2pq and ¢, where
p=x-+1yand ¢ =14y-}z are the frequencies of the A and B genes in the
population. Thus the above equilibrium frequencies are attained after
one generation of random mating. This law, which is fundamental in
population genetics, was discovered independently by the English mathe-
matician Hardy and the German physician Weinberg in 1908.

If the three genotypes are all distinguishable find the probabilities that
(@) a pair of brothers, (§) a pair of unrelated individuals in a randomly
mating population will appear the same when p == g =— 1.
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2.5. The results of Table 7 on p. 25 can be explained on the assumption
that the genes for flower colour and pollen shape are on the same chromo-
some but that thereis a probability = that one of the genes will be exchanged
for the corresponding gene on the other chromosome. If we denote the
genes for purple or red flowers by P and p, and the genes for long and
round pollen by L and [, then the hybrids from the cross considered will
all be of the genotype PL/pl, the notation indicating. that the P and L
genes are on one chrosomome and the p and [ genes on the other. When
these hybrids are allowed to self-fertilise, there is a chance = that the L
and [ genes will interchange in one parent, giving Pl/pL; there are there-
fore really three mating types, PL{pl x PL|pl, Pl{pL X PL/pl and Pl[pL X Pl|pL,
which occur with probabilities (1—)2, 2a(1—a) and =#? respectively.
Find the probabilities of the four possible phenotypes resulting from the
experiment in terms of 0 == (1—=)2, '

2.6. Five players enter a competition in which each plays a game against
each of the others. The two players in each game have an equal chance
of winning it; a game must end in a win for one of the players who then
scores a point. The competition is won by the player or players scoring
most points, What is the probability that a particular player will (a)
win the competition outright; (5) share in winning with other players?
[Certificate, 1959]

2.7. In a game of bridge the declarer finds that he and his partner hold
9 spades between them when dummy is laid down. What are the chances
that the remaining spades are distributed (a) 4-0, (5) 3-1, (¢) 2-2 among
his opponents?

2.8. A poker hand contains 5 cards. A flush is a hand all of the same
suit, a straight is a hand in rank order (Aces counting high or low), and
a straight flush is a hand all of the same suit in rank order; these categories
are exclusive so that a straight flush does not count as either a flush or a
straight. What are the chances of dealing (a) a flush, (b) a straight, (¢)
a straight flush?

CHAPTER 3

RANDOM VARIABLES AND PROBABILITY
DISTRIBUTIONS

So far we have been considering the probabilities of quite
arbitrary events. Very often, however, the events in which
we are interested are numerical. Such a numerical variable
which takes different values with different probabilities is
called a random variable. There are two types of random
variable: discrete variables, such as the number of petals on a
flower, which arise from counting and which can in consequence
only take the integral values 0, 1, 2, ...; and continuous variables,
such as the length of a petal or the weight of a man, which
result from measuring something and can therefore take any
value within a certain range. We will now discuss them in
turn,
DiscRETE RaNDOM VARIABLES

As an example of a discrete random variable, consider the
data in Table 8 on the sizes of 815 consecutive litters of rats.
We can imagine that if more and more litters of the same
species were counted under the same conditions the relative
frequencies in the last row would tend to stable limiting values
or probabilities. Litter size may thus be thought of as taking
different values with different probabilities, that is to say as a
random variable.

- Table 8 is said to represent the frequency distribution of litter
size since it shows with what frequencies litters of different
sizes are distributed over the possible values of litter size.

TasLe 8 _
Frequency distribution of litter size in rats (King, 1924)
Litter size 1 2 38 4 5 6 7 8 9 10 11 12 Total

No. oflitters 7 33 58 116 125 126 121 107 56 37 25 4 815
~'Relative

. frequency -01 -04 -07 -14 -15 -15 -15 .13 .07 -05 -03 -0l 1-00

29
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The data can be represented graphically in a diagram like
Fig. 3. As the number of observations increases the frequency
distribution will tend to a limiting probability distribution which
will show the probabilities with which litters of different sizes
are distributed over the possible values of litter size; we are in

5T
101

05 |
10 11 12

[V 2 3 4 5 6 7 8 9
Litter size

Relative frequency -

Fic. 3. Frequency distribution of litter size in rats

fact only interested in the actual frequency distribution in
Table 8 because of the information which can be inferred
from it about the underlying probability distribution. An
cxample of a theoretical probability distribution is provided
in Table 4 on p. 20, in which are shown the probabilities of
throwing different numbers between '2 and 12 with two
unbiased dice. '

We must now introduce an important principle of notation.
A random variable will be denoted by a capital letter, such as
X, usually in the later part of the alphabet. Associated with
any discrete random variable there will be a corresponding
probability function which tells us the probability with which
X takes any particular value. For example, if X is the sum
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of the numbers on two unbiased dice, then

1
Prob [X —2] — L
70b [ ] 36
Prob [X = 3] — 2

36

and so on. This particular probability function is most easily
displayed in a table, as in Table 4 (p. 20); it can however
also be given in a formula

Prob [X = x] — 9;%:1'

xr=2,3..,12,

(1%—7| means the modulus or absolute value of x—7, the
sign being disregarded.) We have been forced to introduce
another symbol, x, to stand for a particular, but arbitrary,
value that the random variable can take; once x has becn

(3
)14

o

P(x)

Yw
T

e L
T T
S e e ]

(x)

Fic. 4a. The probability function of the number of
points on two dice
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specified the probability that X will take that value can be
calculated (provided of course that the probability function
is known). The probability function is thus a function of this
associated mathematical variable x: a function of the random
variable itself, such as X2 or 3X, would on the other hand be a
new random variable and not a probability function; X2
for example would be a random variable taking the values
4,9, 16, 25, ..., 144 with probabilities 1/36, 2/36, 3/36, 4/36, ...,
1/36. A probability function is usually denoted by P(x).
Instead of the probability function, P(x), it is sometimes con-
venient to consider the cumulative probability function, which
specifies the probability that X is less than or equal to some
particular value x and which may be denoted by F(x):

F(x) = Prob [X=x].

The cumulative probability function can clearly be calculated
by summing the probabilities of all values less than or equal
to x:
F(x) = P(0)4+P(1)+...+P(x) = ) Pu).
usw

(The symbol 2 stands for summation and the expression on the
right hand side of the above identity means the sum of the
terms P(u) over values of u which are less than or equal to x;
it has been necessary to introduce the new symbol u because
we are now thinking of x as an arbitrary constant.) If X is the
sum of the numbers on two unbiased dice, for example, then

1

(2) = 36
_3

F(3) = 36

and so on. F(x) is also defined for non-integral values of x;
for example, F(3%4) = 3/36, since the probability that X will be
less than or equal to 3} is the same as the probability that it will
be less than or equal to 3. Figs. 4a and 4b are graphical repre-
sentations of P(x) and F(x) for this random variable. It is clear
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F(x)

[1] n L 1 s i \ L 2 L 1
2 3 4 5 6 7 8 9 10 11 12

(x)

Fic. 4b. The cumulative probability
function of the number of points on two dice

that for any discrete random variable F(x) will be a step
function increasing from zero to one and taking a jump of size
P(x) at each integral value of x.

ConTiNuous RANDOM VARIABLES

“So far we have been considering random variables which
resulted from counting something and could therefore only
take the discrete values 0, 1, 2, .... We turn now to continuous
variables, which result from measurement and can therefore
take any value within a certain range. Consider as an example
the frequency distribution of the weight of 338 Anglo-Saxon
silver pennies shown in Table 9. Each coin was weighed to the
nearest tenth of a grain; the entry ‘144 — 18’ therefore means
that 18 coins weighed between 1445 and 14-95 grains. It

 should be noted that the width of the class intervals is 1 grain

in the tails of the distribution but has been reduced to % grain

. in the centre where more observations are available.

The frequency distribution of a continuous variable like this



34 PRINCIPLES OF STATISTICS

is best represented graphically in a Aistogram as in Fig. 5. The
principle of the histogram is that the area of each rectangle
represents the proportion of observations falling in that

TaBLE 9

Frequency distribution of the weight in grains of 338 silver pennies of the
¢ pointed helmet * type of Cnut. (Source: Butler, 1961)

Weight (grains) Number of pennies

10— 1
11— 5
12 — 8
13 — 22
14— 15
144 — 18
15— 60
155 — 65
16 — 44
164 — 40
17 — 22
173 — 26
18 — 12
19 and over 0
47 7
- Z
5 w7
s ot A . 7//
o , XN

10 1" 12 13 14 15 16 17 18 19
Weight (grains)

Fic. 5. Histogram of the distribution of coin weights in Table 9

interval. For example, the proportion of coins weighing
between 1445 and 14-95 grains is 18/338 = -053; this is
represented by a rectangle of the same area, that is to say with
a width of } and a height of 2x 053 = 106, erected on the
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base 14-45-14-95. The ordinate in a histogram is thus not
relative frequency but relative frequency per unit, in this
instance per grain. The reason for representing the data in
this way is that the width of the class interval is quite arbitrary
and one wants to obtain roughly the same picture whatever it
is and whether or not it is the same throughout the distri-
bution. In Table 9, for example, it is obvious that the drop
from 22 coins in the class 13— to 15 coins in the class 14—
is due to the fact that the width of the class interval has been
reduced from 1 grain to 4 grain at this point. It would
clearly be misleading to use the frequencies as they stand
without making an adjustment for the difference in the class
width. The histogram is therefore constructed so that the area
rather than the height of each rectangle represents the relative
frequency of observations in that interval. It follows that the
area of the histogram between any two points represents
the relative frequency of observations between those two
values. In particular the area of the whole histogram is
unity. :
We can imagine that, if the number of observations is in-
creased indefinitely and at the same time the class interval
is made smaller and smaller, the histogram will tend to a
smooth continuous curve; this curve is called the probability
density function which we may denote by f(x). The area under
the density function between any two points, #; and x,, that is
to say the integral of the function between them, represents
the probability that the random variable will lie between
these two values:

Prob [x,< X<xy] = f " F(x)dx.

This is illustrated in Fig. 6. Ifdxis a very small incrementin x,
so small that the density function is practically constant
between x and x--dx, then the probability that X will lie in
this small interval is very nearly f(x)dx, which is the arca
of a rectangle with height f(x) and width dr. f(x) may
therefore be thought of as representing the probability density
at x.

A continuous probability distribution can also be represented




36 PRINCIPLES OF STATISTICS

by its cumulative probability function, F(x), which, as in the
discrete case, specifies the probability that X is less than or
equal to x and which is the limiting form of the cumulative
frequency diagram showing the proportion of observations
up to a given value. For example, in Table 9 there is 1 observa-
tion less than 10-95, 6 less than 11-95 and so on; the corre-
sponding proportions are -003, -018 and so on, which are
plotted in Fig. 7. As the number of observations increases,

fix)

Prabability density

Fic. 6. The shaded area represents the probability that the
random variable lies between x; and x;

and the class interval is reduced so that more and more points
can be plotted, the graph will tend to a limiting curve which is
the cumulative probability function, F(x), any point on which
shows the probability that X will be less than or equal to x.
As in the discrete case F(x) must increase from 0 to 1 as x
increases from its smallest to its largest value but it will be a
smooth, continuous curve and not a step function.

It follows from what has been said in the paragraph before
last that F(x) is the area under the density function, that is
to say the integral, to the left of and up to x:

F(x) = Prob [X<x] = j_m Flu)du.

Comparison with the corresponding formula for a discrete
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variable on p. 32 shows that it is the same except that an
integral has replaced a sum; the reason for this is that the
discrete probability mass, P(x), has been replaced by the infinit-
esimal element of probability f(x)dx. Conversely, the density
function, f(x), is the rate at which F(x) is increasing, i.e. its
derivative.

As a simple though rather trivial example of a continuous
probability distribution we shall consider the uniform distri-

10 p

Cumulative proportion

10 11 12 13 14 15 16 17 18 19
Weight (grains)

Fre. 7. Cumulative frequency diagram of the distribution of coin
weights in Table 9

bution. A continuous random variable is said to be uniformly
distributed between 0 and 1 if it is equally likely to lic any-
where in this interval but cannot lie outside it. For example,
if we measure the height in inches of a group of men and
consider the fractional part of each height ignoring the integral
part, the result will be a random variable which must lie
between 0 and 1 and which will probably be nearly evenly
distributed over this interval. The density function of such a
random variable must be a constant; and this constant must be
1 since the area under the density function must be 1. Hence

S =1,0=x<Z1
Sf(x) =0, otherwise.



38 PRINCIPLES OF STATISTICS

By integrating this function we find that

Flx) =x, 0=x=1
::0, x<<0
=1, x>1.

This result is in accordance with common sense. The distri-
bution is illustrated graphically in Fig. 8.

F(x)

Fic. 8. (a) Probability density
function and (b) cumulative
probability function of the
uniform distribution

f(x)

MULTIVARIATE DISTRIBUTIONS

These ideas can be extended to describe the joint distribution
of two or more random variables. Thus Table 3 on p. 18
shows the joint frequency distribution of the number of pips
on two dice; this is called a bivariate distribution since two
random variables are involved. Let us denote the numbers
of pips on the red die and on the white die by X and ¥ respec-
tively and let us suppose that the table has been recalculatfz:d
to show relative frequencies rather than absolute frequencies
and that the experiment is then continued indefinitely so
that these relative frequencies tend to the corresponding
probabilities. The probabilities in the main body of the
table will constitute the joint probability distribution of X
and 17 for example, the entry in the third row and the fourth
column will be the probability that simultaneously the red
die shows 3 pips and the white die 4, which we may denote
by P(3, 4). 1In general, P(x, y) denotes the probability that
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simultaneously the red die shows x pips and the white die y
pips:
P(x,y) = Prob [X = x and ¥ =].

This probability will be found in the xth row and the th
column of the table.

The main body of the table will thus represent the joint
probability distribution of X and 7. The entries in the right
hand margin, obtained by summing the probabilities in differ-
ent rows, will constitute the overall probability distribution
of X, regardless of the value of 7, which we may denote by
Py(x):

Py(x) = Prob [X = x] =Y P(x, ).
¥y

Likewise the entries in the bottom margin of the table, obtained
by summing the probabilities in the columns, will constitute
the overall probability distribution of ¥’ , regardless of the
value of X, which we may denote by Py(y)

Po(9) = Prob [V = y] =L P(x 7).

These distributions are sometimes called the marginal distri-
butions of X and ¥ respectively.

The conditional probability that X will take the value x
given that ¥'is known to have the value y is

Prob [X ==x |1 =] __.P(xaj’)

Pa(y)
If X and ¥ are statistically independent, as they are likely
to be in this example, then this conditional probability distri-
bution will not depend on y and will be equal to the overall
probability distribution, P;(x), for all values of y; it follows
that

P(x, y) = Py(x) X Py( y).

This relationship is, of course, an expression of the law of

multiplication for independent events. If, however, X and ¥
are not statistically independent the conditional probability

distribution of X will vary with y and the above relationship
will not hold.
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The analysis in the case of continuous random variables is
similar. Table 10, for example, shows the joint frequency
distribution of head length (X) and head breadth (1) among
3000 criminals (Macdonell, 1901). This distribution can be

TasLE 10

The joint frequency distribution of head length and head
breadth in 3000 criminals (Macdonell, 1901)

Head breadth (centimetres)

13— 133— 14— 14— 15— 15}— 16— 164 —| Total
~ 16— 0 0 0 0 1 0 0 0 1
£ 16— o0 0 1 0 1 0 0 0 2
2 17— 0 5 4 4 1 0 0 0 14
E 17— 1 8 17 15 1 2 0 0 54
§ 18- 0 6 55 119 74 14 1 0 269
=~ 18— 0 5 108 264 234 75 6 1 693
£ 19— 0 10 72 360 400 156 26 2 | 102
£ 194— 0 1 28 174 239 160 36 7 645
o 20— 0 2 4 31 8 100 24 2 249
g 204— 0 0 1 4 17 17 5 0 44
mo21—- 0 0 1 0 0 1 0 1 3

Total 1 37 291 971 1064 525 98 13 | 3000

represented in three dimensions in a solid histogram in which
each cell of the table is the base of a solid rectangular column
whose volume is equal to the relative frequency of observations
in the cell. We can imagine that if the number of observations
were increased indefinitely and the dimensions of the cells
reduced accordingly, the solid histogram would tend to a
smooth surface whose height at any point (x, y) could be
represented by a continuous function, f(x, »); this function
is the bivariate probability density function. If dx and dy

are small increments in x and y respectively then f(x, y)dxdy

is the probability that the head length lies between x and
x-+dx and that simultaneously the breadth of the head lies
between y and y+dy:

S (%, p)dxdy == Prob [x<X=<x-dx, y<¥Y= y+dy].

The marginal frequency distribution of head length, regard-
less of the breadth of the head, is found from the right hand
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margin of the table; the marginal density function, f(x),
which is the analogue of Py(x), is clearly found by integrating
S (%, ) over y:

filx) = j £ ).

Similarly the marginal frequency distribution of head breadth,
regardless of the length of the head, is found from the bottom
margin of the table; the density function, f3( »), can be found
by integrating the joint density function over x.

The conditional frequency distribution of head length
among criminals with a particular breadth of head is found
from the column in the main body of the table corresponding
to that head breadth. Likewise the conditional probability
density function of head length for a fixed head breadth is a
vertical section of the bivariate density surface and is thus
proportional to the bivariate density function, f(x, »), with »
held constant at the required value; to make the area under
the curve unity it must be divided by f3(»), which is the
integral of f(x, y) for fixed y. The conditional probability
density function of head length for fixed head breadth is
therefore:

flx0)

RO

If head length and head breadth were statistically independent
this conditional distribution would be independent of the head
breadth, y, and would be equal to the marginal density
function, fi(x), whatever the head breadth was; it would
follow in these circumstances that

Sx,2) =fi(x) X f2( ).

In fact, however, it is clear that head length and head breadth
are not independent but that men with long heads have broader
heads than men with short heads (see Exercise 3.3); in con-
sequence the above relationship does not hold.

This analysis can obviously be generalised to the joint
distribution of any number of random variables, although
pictorial representation must be abandoned.
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Exercises

3.1. Plo.t th.c probability function and the cumulative probability function
of the distribution of the number of points on three dice evaluated in
Exercise 2.3.

3.2. If the digits in a table of random numbers are arranged in- groups of
four and a decimal point is placed in front of each group, the resulting
variable will be a random variable following very nearly a uniform
distribution between 0 and 1. Construct a sample of 50 observations
from a uniform distribution by using a table of random numbers in this
way, draw the histogram and the cumulative frequency diagram and
compare these diagrams with the theoretical curves. Keep the data for
use in Exercises 4.1 and 4.8.

3.3. Draw the histogram of the distribution of head breadth in Table 10
on p. 40, using centimetre class widths at the tails. Also draw the histo-
grams of the distribution of head breadth for those with head lengths less
than 19 cm, between 19 and 20 cm, and greater than 20 cr.

3-4- Suppose that X is a random variable taking the values — 1, 0and 1
with equal probabilities and that ¥ = X2. Find the joint distribution and
the marginal distributions of X and ¥ and also the conditional distribution
of X given (a) V=0, (b) ¥==1.

3.5 If X and T are independently and uniformly distributed between 0
and 1, what does their bivariate density function look like? Hence find
fhe probability that ¥/X is less than } by considering the area of the triangle
in the unit square defined by the relationship y< Lx.

Problems

3.1. Suppose that X is a continuous random variable and that ¥ is a
lmea'r function of X, ¥ == a-}-bX where b is positive. Denote the probability
density functions of X and ¥ by f(x) and g(») and the corresponding
cumulative probability functions by F(x) and G(y) respectively. Then

G(9) = Prob[ 1< y] = Proba-+bX < y] = Prob[ X< (y—a)/[b]

and so
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This method can be generalised to find the distribution of any monotonically
increasing function of X. Suppose that X is uniformly distributed between
0 and 1 and find the distribution of (a) X2, (8) v X.

3.2. (a) Suppose that ¥ = a-+-bX where b is negative; find the distribution
of ¥ in a similar way. (b) This method can be generalised to find the
distribution of any monotonically decreasing function of X. Suppose that
X is uniformly distributed between 0 and 1 and find the distribution of
—logeX.

3.3. This method can be extended to deal with simple non-monotonic
functions. If ¥'== X2, where X can take positive or negative values, show
that G(y) == Prob[— vy<<X<+/y] and hence find g(y). Find the distribu-
tion of X2 if X is uniformly distributed between —1 and 2.

3.4. Suppose that a machine gun is mounted at a distance b from an
infinitely long straight wall. If the angle of fire measured from the
perpendicular from the gun to the wall is equally likely to be anywhere
between — /2 and -}#/2 and if X is the distance of a bullet from the
point on the wall opposite the gun, show that X follows the Cauchy
distribution
b
f(x)—;m — 00 <<x << Q0.

3.5. Suppose that X and 1 are independent, continuous random variables
and that U= X--Y. Denote their probability density functions by f (x),
2(y) and h(x) and the corresponding cumulative probability functions by
F(x), G(y) and H(u) respectively. Then

H(u) == Prob [U<{u] = Prob [X - ¥<u] = Prob [X<{u—17].

For a fixed value of 7, say ¥ =y, this probability is F(zu—y), and the
probability that 7" will lie in the range y to y+4-dy is g(¥)dy. Hence the
probability that U<y and that simultaneously 7 lies between y and y--dy
is F(u—y)g(y)dy and so the total probability that U<Cu is

H() — [ Fu=p)g()dy,
whence
W) = [ f w=2)e()dy,

provided that the range of integration is independent of u.

Suppose that X and 1" are independently uniformly distributed between
0 and 1. Find the distribution of U= X-}-Y. [Hint: in finding H(u)
consider separately the two cases 0<Cu<Cl and 1<Cu<C2. Be careful.]

3.6. Suppose that X and 1 are independent, continuous random variables,
that ¥ is essentially positive and that U= X/Y. Then, in a notation
analogous to that of Problem 3.5,

H(u) = Prob [U<u] = Prob [X/¥<u] — Prob [X<u¥]
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By an argument similar to that of Problem 3.5 it follows that

H) = [ Fw)e(»,
whence

hw) = [ £ )¢ D,

provided that the range of integration is independent of u.

Suppose that X and 7 are independently uniformly distributed between
0 and 1. Find the distribution of U= X/¥. [Hint: consider separately
the two cases O0<Cu<C1 and 1<Cu<<00.]

3.7. The master of a ship can fix its position by taking bearings of two
known points on land. However, if three bearings are taken the position
lines will usually not meet in a point because of errors of measurement
but will form a triangular ¢ cocked hat’ in which it is assumed that the
ship lies. If the observed bearings are symmetrically and independently
distributed about the true bearings show that the probability that the ship
lies in the cocked hat is }.

3.8. I am to set out for Omega tomorrow morning at 9.30, and find that
I am indifferent between two routes, in the sense that I am equally likely
to be late for an appointment at 3.15.

If I take the first route I will get to Beta between noon and 1.30. It
normally takes a quarter of an hour to get through Beta, but one’s speed
is reduced by two thirds between 1.00 and 2.00. From the far side to
Omega takes two hours.

The second route is through open country, so that one can be sure of
averaging between forty and fifty miles per hour.

How many miles is the second route?

NOTE: Alltheprobabilitydistributions mentioned areuniform. [Certificate,
1965.]

CHAPTER 4

DESCRIPTIVE PROPERTIES OF
DISTRIBUTIONS

It is often useful to summarise the main properties of a
distribution, such as its centre, its variability and its general
shape, in one or two’descriptive measures; in this chapter we
shall consider how this can best be done. We shall begin by
discussing measures of the centre or location of a distribution.

MEeASURES oF LocaTioN

There are three commonly used measures of the centre or
location of a distribution; they are, in order of importance,
the mean, the median and the mode.

Mean. The mean or average of a set of observations is simply
their sum divided by their number. For example, the mean of
the five observations

11,12, 13,9, 13
is 58/5 = 116 since they add up to 58. The general formula
for the mean, %, of n observations, xy, x, ..., &, is
. x1txx+...xn — i xn.

X ==
n i=1

If, on the other hand, the data are given in the form of a
frequency distribution in which we are told that the value
x has occurred n(x) times, then the sum of the observations
is )" xn(x) so that the formula for the mean is

z

‘f = ; xn(x)/n.

For example, to find the mean litter size for the data in Table 8

on p. 29, we first calculate the total number of offspring in all
the litters, which is

IX74+2%x33+...+12x4 =4992
and then divide this by 815, the number of litters, to obtain

45
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the mean or average litter size of 4992/815 = 6-125. To
perform the corresponding calculation for the grouped fre-
quency distribution of a continuous variable it is assumed
that all the observations in a class interval are concentrated
at the middle of that interval. For example, the mean weight
of the 338 coins whose weight distribution is shown in Table 9
on p. 34 is calculated as

1% 10-454+-5%11-45+4...+26 x 17-704-12 x 18-45
338

= 15-722 grains.

(It should be noted that 10-45 is the centre of the class interval
10 — since it contains coins weighing between 9-35 and 10-95
grains; similarly 17-70 is the centre of the class interval
174 — since it contains coins weighing between 17-45 and
17-95 grains.)

If we write p(x) = n(x)/n for the proportion of times on
which the value x has occurred, then the formula for the mean
can be re-written as

¥ =Y xp(x).

@
That is to say, the mean is the sum of the possible values which
the variable can take, each value being multiplied by its
relative frequency of occurrence. If we are considering a
discrete distribution then the proportions, p(x), will, as the
number of observations increases, tend to the corresponding
probabilities, P(x), and so £ will tend to the limiting value

Y xP(x)

x

which is the sum of the possible values which the variable
can take, each value being muliiplied by its probability of
occurrence. This quantity can therefore be taken as a measure
of the centre of a probability distribution. It is known as
the mean of the probability distribution and is usually denoted
by p. For example, the mean of the distribution of the sum of
the points on two dice (see Table 4 on p. 20) is
2

1 1
il =+ 12x= =T,
2x36+-3><36+ + ><36
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In the case of a continuous distribution the probability mass
P(x) is replaced by the infinitesimal element of probability
Sf(x)dx; the mean of the distribution towards which # tends
as the number of observations increases is therefore given by

the integral [xf (x)dx

evaluated over the possible range of values of the variable.
For example, if X is uniformly distributed between 0 and 1,
then f(x) is 1 between 0 and 1 and zero elsewhere; the mean
of the distribution is therefore

1
j xds = [12]} = 1.
1}

It is important to distinguish carefully between the mean, %,
of a set of observations or a frequency distribution, and the
mean, p, of the corresponding probability distribution towards
which % tends as the number of observations increases. A
measure, such as the mean, #, which can be calculated from an
observed frequency distribution is called a statistic, while the
corresponding measure of the probability distribution is called
a parameter. In order to distinguish between them it is usual
to denote statistics by Roman letters and parameters by Greek
letters. When this is inconvenient a statistic is denoted by a
small letter and a parameter by the corresponding capital
letter. For example, 7 cannot be used for a parameter since
by mathematical custom it is used for the ratio of the circum-
ference to the diameter of a circle; consequently p is used to
denote an observed proportion and P for the corresponding
probability. In practice, of course, a statistic is only of interest
because of the information which can be inferred from it
about the corresponding parameter; the method of extracting
this information constitutes the subject matter of statistical
inference which will be considered later.

Median. We turn now to the second measure of the ‘ centre’
of a distribution, the median. The median of a set of observa-
tions is the middle observation when they are arranged in
order of magnitude. Thus the median of the five observations

1,12, 13, 9, 13

is 12 since it is the third observation when they are rearranged
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in rank order (9, 11, 12, 13, 13). The median litter size of the
data in Table 8 (p. 29) is the size of the 408th litter, which is
6 since there are 339 litters of size 5 or less and 465 of size 6 or
less. When there is an even number of observations the median
is defined as lying half-way between the two middle ones. To
estimate the median from a grouped frequency distribution
of a continuous variable we interpolate linearly in the class
interval in which it lies. For example, the weights of 338
coins are recorded in Table 9 on p. 34, so that the median is
half-way between the weights of the 169th and the 170th coins.
Now there are 129 coins which weigh up to 15-45 grains,
and 194 coins which weigh up to 15-95 grains. The median,
therefore, lies somewhere in this interval and is calculated as

1545;{—%’-—?)(% == 15-7615 grains.

Cumulative proportion

0 1 1 1 1.1 L 1 2
10 11 12 13 14 15 4e 17 18 19
Weight (grains)  median

Fic. 9. Graphical representation of the median of the dis-
tribution of coin weights (compare Fig. on p. 37)

Graphically, the median is the point at which the cumu-
lative frequency function reaches %; this is illustrated in
Fig. 9. As the number of observations increases the cumulative
frequency function tends towards the cumulative probability
function, F(x); the median of the probability distribution,
towards which the observed median tends, is therefore the
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point at which F(x) first reaches }; this is illustrated in
Fig. 10.

F(x}

7 eemomws o o - -

Cumulative probability function

0

median X

Fie. 10. Graphical representation of the
median of a probability distribution

The median of a continuous probability distribution divides
the distribution in two equal parts in the sense that

Prob [X<median] = Prob [X >median] = }.

This is not true for a discrete distribution, because a non-
zero probability is concentrated at the median itself. For
example, the median of the distribution of the sum of points
on two dice (p. 20) is 7; in this case

Prob [X<7] = 15/36
Prob [X=7] = 6/36
Prob [X >T7] = 15/36.

It is true that there is an equal probability that the random
variable will be above or below the median, but even this will
not generally be so. Thus we might equally well have a
probability of 13/36 that X will be less than 7, a probability
of 6/36 that it will be equal to 7 and a probability of 17/36 that
it will be greater than 7. The median would still be 7, but the
random variable would be more likely to lie above this value
than below it. For this reason the median is more useful in
describing a continuous than a discrete distribution.

Mode. The third measure of location is the mode, which is
the value of the most frequent observation. The mode of
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a discrete probability distribution is the value which has the
highest probability of occurring; thus the mode of the dis-
tribution of the sum of points on two dice shown in Table 4
on p. 20 is 7. Similarly the mode of a continuous probability
distribution is the point at which the density function attains
its highest value and can be found by solving the equation

df (%)

dx

(We are assuming for the moment that the curve has only one
maximum.)

There is an interesting empirical relationship between the
mean, the median and the mode of a continuous probability
distribution. If the distribution is symmetrical they will, of
course, all be the same. 1If, however, it is skew, the mean will
lie nearer the long tail of the distribution than the median
and the mode will lie on the other side of the median from the
mean. That is to say, the mean, the median and the mode
will either occur in that order (their alphabetical order) or in
the reverse order, depending on whether the distribution is
skew to the left or the right. Furthermore, the distance be-
tween the mode and the median is usually about twice the
distance between the median and the mean. This rather
remarkable relationship is illustrated in Fig. 11.

N

2 1

mode median mean

Fic. 11. Relationship between the mean, the median and the
mode of a typical continuous probability distribution

The mode is a useful quantity in describing the properties
of probability distribution but it is rather doubtful whether
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it can be regarded as a measure of the ‘ centre ’ of the distri-
bution. Consider, for example, the exponential distribution,
which is discussed in more detail in Chapter 6 and whose
density function is

Slx) = A7 0<x< 0.

The mode of the distribution is 0, but this is clearly not a
reasonable measure of its ‘ centre’ since the variable must
be positive.

The mode is seldom used as a statistic for describing a
frequency distribution because of the difficulty of defining
it. In Fig. 5 on p. 34, for example, it is clear that the modal
value lies somewhere between 15 and 16 grains, but it is
difficult to see how it could be located more precisely without
drawing a theoretical curve through the histogram; this pro-
cedure would be to some extent arbitrary because the position
of the mode would depend on the form of the curve which had
been chosen to represent the data. In a less regular histogram
based on fewer observations the problem becomes even more
acute. It has also been suggested that the mode can be calcu-
lated from the observed mean and median by the formula

mode = mean - 3(median —mean).

This formula assumes the truth of the relationship between
these three quantities described above and is thus again
begging the question. In the case of a discrete frequency
distribution the mode can be defined without ambiguity as
the value of the most frequent observation, but this has little
meaning unless there is a considerable number of observations,
and even then difficulties arise if there appears to be more
than one modal value. For these reasons the mode is not used
as a precisely defined statistic characterising a frequency
distribution, although inspection of the data will usually enable
a fairly good estimate to be made by eye of the mode of the
corresponding probability distribution.

The mean v. the median

We must now compare the merits of the mean and the
median as measures of the ‘centre’ of a distribution. We
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shall confine our attention to continuous distributions since
we have seen that the median is rather unsuitable for describing
discrete distributions. Suppose first that the underlying
probability distribution is symmetrical. In this case the mean
and the median of the distribution will be the same and will
coincide with the centre of symmetry; this must clearly be
true of any sensible measure of location. If, however, we take
n observations from this distribution and calculate their mean
and median, it is very unlikely that they will be identical
although they will both be estimates of the same parameter.
The question to be considered, therefore, is whether the sample
mean or median provides, on the average, the more accurate
estimate of this parameter. This question will be considered
in detail in Chapter 11. The answer depends on the shape
of the underlying distribution, but it turns out that the sample
mean is usually, though not always, more accurate than .the
median. If we are prepared to assume that the underlying
distribution is symmetrical, therefore, we shall probably .do
better by employing the sample mean rather than the median
to estimate its centre. . o
Let us now suppose that the underlying proba.l}1hty distri-
bution is skew, so that one tail of the distribution extends
further out than the other. In this case the mean and the
median of the distribution will not be the same and the mean
will lie further out on its long tail than the median (see Fig. 11
on p. 50). Suppose, for example, that Fig. 11 represents a
distribution of incomes which will have a long tail extending
out to the right because of the very sm.all number of people
‘with very large incomes. The mean will be larger than the
median because it is affected by the actual values of the very
large incomes, whereas the median is only affected by the very
small number of people with such incomes. The sample mean
and median will therefore be measures of different parameters
and in deciding which of them to use we have to'decidc wh.xch of
these parameters of the probability distribu_tloq we wish to
estimate. The mean of a probability distribution is its centre of
gravity, while the median divides it into two equal parts. Somf:-
times one and sometimes the other of these two measures will
suit our purposes better. For example, the median might be a
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more appropriate measure than the mean of the income of the
‘ typical man °, whereas the mean might be more appropriate
if we were comparing average incomes in England and
Scotland as a measure of economic prosperity.

The choice between the mean and the median as measures
of the ‘centre’ of an asymmetric probability distribution must
remain to some extent arbitrary. There are, however, two
further considerations to guide us. The first is that the median
is invariant under monotonic transformations of the random
variable. For example, if X is an essentially positive variable
with median f, then the median of VX will be 4/ since, if
the probability that X is less than j is %, then the probability
that 4/X is less than 4/ must also be 3. The same must
hold for any monotonic function of X, that is to say any func-
tion of X which either always increases or always decreases
as X increases. The mean of a probability distribution,
however, is not invariant, except under linear transformations.
Perhaps an example will make this point clearer. Consider
three squares with sides of 3, 4 and 5 inches and consequently
with areas of 9, 16 and 25 square inches. The medjan length
of the sides is 4 inches and the median area of the squares is
16 square inches, which is of course the square of 4, The
mean length of the sides is also 4 inches, but the mean area
of the squares is (94-16-+25)/3 = 1667 square inches.

The median is invariant because it is calculated simply
from ranking the observations and does not involve any arith-
metical operations on them. This property provides a strong
argument for the use of the median when the scale of measure.
ment is not fully quantitative, as may happen in the social
sciences. For example, a psychologist might construct a scale
of introversion/extroversion between 0 and 10. If Brown,
Jones and Smith have scores on this scale of 3, 4 and 6, the
psychologist would conclude that Smith was more extroverted
than Jones and Jones than Brown, but he might well be
unwilling to conclude that Smith was twice as extroverted as
Brown, or even that the difference in the degree of extroversion
between Smith and Jones was twice as large as the difference
between Jones and Brown. Under these circumstances it is
to some extent arbitrary whether the original scores, or their
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squares, or square roots, or logarithms, are used to ‘ measure ’
extroversion and the median would be a more appropriate
measure of the ¢ centre ’ of the distribution (see Siegel, 1956).

The second consideration to guide us in choosing between the
mean and the median as measures of location is one of mathe-
matical convenience. In statistical theory we often wish to
study the properties of sums of random variables; thus if X
and 7 are random variables, their sum, X+ 7, will be a new
random variable whose probability distribution can be deter-
mined if we know the distributions of X and 7. Now it happens
that the mean of the sum of two or more random variables
is equal to the sum of their means (a full discussion will be
given in the next chapter). No such simple relation holds
between the medians of the corresponding distributions.
It follows that the mean of a distribution can often be found
quite easily, whereas its median is much less tractable. This is
undoubtedly the main reason why statisticians usually choose
the mean rather than the median to describe the °centre’
of a probability distribution.

MEASURES OF DISPERSION

The characteristic feature of a random variable is its vari-
ability, and it is clearly important to be able to measure the
amount of this variability. Perhaps the most obvious measure
of this quantity is the mean deviation which is the average of the
absolute deviations from the mean. For example, we have
seen that the mean of the five observations

11,12, 13,9, 13
is 11-6; the deviations from the mean, regardless of sign, are
0-6,0-4, 1-4, 26, 1-4

whose average is 6-4/5 = 1-28. As the number of observations
increases, the mean deviation tends towards a limiting value,
which is the mean deviation of the corresponding probability
distribution, given by the formula

=Y | #—p | P(x) in the discrete case

mean deviation = . .
= [ | x—p | f(x)dx in the continuous case.
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For example, the mean deviation of the uniform distribution is
1 1
f 5 | dx =2 j (v —)dx — 22 —a} —
0 b

Another measure of variability is the interquartile range.
Just as the median is the middle observation when they are
arranged in rank order, so the upper quartile is the observation
lying three-quarters of the way, and the lower quartile is the
observation one-quarter of the way, from the smallest observa-
tion. Thus the upper and lower quartiles of the five observa-
tions in the preceding paragraph are 13 and 11 respectively.
(These are the fourth and second observations in rank order;
4 is three-quarters of the way and 2 one-quarter of the way
between 1 and 5.) The interquartile range is 13 —11 = 2,

Graphically the lower and upper quartiles are the points
at which the cumulative frequency function first reaches the
values of } and £ respectively. As the number of observa-
tions increases the cumulative frequency function tends to the
corresponding camulative probability function, F(x), and so the
lower and upper quartiles of the probability distribution,
towards which the observed quartiles tend, are the points at
which F(x) first reaches the values of } and §. If the distri-
bution is continuous they are the solutions of the equations

Flx) =1
and F(x) = §.

Probability density funetion

7NN\ 7%,

Lower quartile Upper quartile

Fic. 12. The quartiles of a continuous probability distribution
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Thus for the uniform distribution F(x) = x, provided that x
lies between 0 and 1; the quartiles of the distribution are
therefore } and #, and the interquartile range is 1. In the
continuous case there is a probability of } that the random
variable will lie below the lower quartile, a probability of } that
it will lie above the upper quartile, and a probability of § that
it will lie between the two quartiles. This is illustrated in Fig.
12. These statements will not be exactly true for a discrete
distribution. The interquartile range is thus a more useful
measure of dispersion in the continuous than in the discrete case.

In practice, however, statisticians almost invariably use a
third measure of dispersion, the standard deviation. The standard
deviation of a set of observations, or a frequency distribution,
is the square root of the average of the squared deviations
from the mean. For example, the squared deviations from the
mean of the five observations given in the first paragraph of this
section are

0-36, 0-16, 1-96, 6-76, 1-96

whose average is 11-20/5 = 2-24. This quantity is called the
variance of the observations, denoted by mj; its square root,
the standard deviation, is 1-50. It will be noticed that the
variance must be positive since all the squared deviations are
positive. Furthermore, the larger these deviations, the greater
will the variance be; it can therefore be used as the basis for a

measure of variability. Itssquare root is used in order to have a

quantity of the same dimensions as the observations. For
example, if the measurements are in feet, then the variance
is in square feet but the standard deviation is in feet.

The variance of a set of observations, or a frequency distri-
bution, is the sum of the squared deviations from the mean,
$2, divided by the number of observations:

S2

my = —.
n

If the data consist of the n observations xy, x5, ..., #s, then the
sum of the squared deviations from the mean is

$2 =3 (—7)2.
=1
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.If the' data are given in the form of a frequency distribution
in which we are told that the value x has occurred n(x) times,
then the formula for the sum of the squared deviations is

§2 =3 (x—7)2n(x).

In practice it is rather tedious to compute $2 directly in this
manner and it is usually calculated by first finding the sum
of the squares of the observations themselves, that is to say

n
izl «? if the original observations are available or Y. x2n(x) if the
= &

data are given as a frequency distribution, and then subtrécting

a correction factor, ni2, The two methods of calculating $2 give
the same answer because
n n

Y (=52 = 3 (s —2n42)

i=1 i=1

™M=

n n
X} 2% Y xi4ni = Y x}-—ni2.
i i=1 i

1 t=1

'I.‘hc variance of the frequency distribution of a discrete
variable can be written in the form

m = 3 (x4 (x).

{\s t.he number of observation, increases the sample mean,
%, will tend to the population mean, x, and the proportions,

p(x), _will tend to the corresponding probabilities, P(x); hence
my will tend to the limiting value

b2 = 3 (x—)2P(x)

which is consequently the variance of the probability distri-
bution and which is often denoted by o2 For example,
the variance of the distribution of the sum of the numbers
on two dice given in Table 4 on p. 20 is

52X 36 + 22X g5 + ... + 52Xy = 30 — 58,

i

36 —

The standard deviation is 4/(210/36) = 2-415. The variance
of a continuous probability distribution is

g = j (e —p)2f (3)d.
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Thus the variance of the uniform distribution is
1

j (s—1ds = Blx 1)1 = &
0

We must now consider why the standard deviation rather
than the mean deviation or the interquartile range is almost
always used as a measure of variability. The reasons are very
much the same as those for using the mean rather than the
median as a measure of location. First, let us assume that the
shape of the underlying probability distribution, but not its
mean or variance, is known. In this case, once one of the three
possible parameters measuring its variability is known, then
the other two can be calculated. For example, if the random
variable is known to follow a normal distribution with standard
deviation o, then its mean deviation is ‘798¢ and its inter-
quartile range is 1-3490 (sec Chapter 7). If, therefore, we wish
to estimate o from a sample of n observations from this dis-
tribution, we can either use the observed standard deviation,
or the observed mean deviation divided by -798, or the observed
interquartile range divided by 1-349. These three statistics
will differ slightly from each other, and from o, because of
sampling variations, but they are all estimates of the same
parameter, o. The question to be considered, thercfore, is
which of them provides, on the average, the most accurate
estimate of this parameter; as we shall see in Chapter 11 the
answer is in favour of the standard deviation. It has been
assumed in this argument that the underlying probability
distribution is known to be normal. In practice this will never
be exactly true, but since many naturally occurring distri-
butions are approximately normal it provides good reason for
using the observed standard deviation as a measure of the
variability of a frequency distribution.

There 1s also a sound reason of mathematical convenience
for using the standard deviation as a parameter to measure
the variability of a probability distribution. In discussing
measures of location we stated that the mean of the sum of two
random variables was equal to the sum of their means. It
will be shown in the next chapter that if the two random
variables are independently distributed the variance of their
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sum 15 equal to the sum of their variances. No such simple
relat19nship holds between the mean deviations or the inter-
quartile ranges of the corresponding probability distributions.
It follows that the variance, and hence the standard deviation
of a random variable can often be found quite easily when thé
other two parameters cannot.

These two reasons together account for the almost universal
use of the standard deviation as a measure of dispersion.

THE SHAPE oF DistriBUTIONS

We }}av? so far discussed how to find measures of the ° centre’
of a distribution and of the degree of dispersion about this
cen.tral value. The third important respect in which distri-
butlons_ may differ is in their shape and we shall now consider
how this rather elusive concept can be described,

Multimodal distributions

We may first distinguish between unimodal distributions
which have only one peak, and multimodal distributions, whic};
have several peaks, If an observed frequency distribution
has several peaks which are real, in the sense that they are not

uc to sampling fluctuations but reflect peaks in the corre-
spon'dmg. pr(?bability distribution, it is usually a sign that the
d}str}but}on 15 a composite one made up of several unimodal
dlstr1but1<_)ns. We saw in Fig. 5 (p. 34) that the distribution
of the weights of the ‘ pointed helmet ’ pennies of Cnut has a
single peak at a little less than 16 grains. Fig. 13 (p. 60)
shows the comparable distribution for the ¢ quatrefoil > pennies
of Cnut; this distribution clearly has two peaks, one in the
same place as the ‘pointed helmet ’ pennies and a subsidiary
peak at.about 21 grains. Now the * pointed helmet > pennies
were being minted during the middle of Cnut’s reign (c. 1023-
1029), wht?reas the  quatrefoil * penny was his first coin type
and was minted from about 1017 to 1023. The subsidiary peak
at 21 grains corresponds to the weight of coins produced at
the end of the reign of his predecessor Aethelred the Unready.
It thus seems likely that Cnut reduced the weight standard

“z:
!
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of the penny from 21 to 16 grains, possibly to accord with
Scandinavian standards, but that he did not introduce this
change until two or three years after his accession, with the
result that two weight standards are represented in his first
coin type.

at _"‘

=
L}

Relative frequency/grain

7 o954z 23:1—1-’-‘-“

8 10 12 14 16 18 20 2 24
Weight (grains)

Fic. 13. Weight distribution of the ‘quatrefoil’ penny of
Cnut (Butler, 1961)

Many biological cxamples of bimodal distributions are
provided by quantitative characters controlled by a single
pair of genes. Thus to many people the chemical substance
phenylthiourea tastes bitter even in very dilute solutions,
while others can only taste it in relatively concentrated solu-
tions. This difference in the ability to taste phenylthiourea
is believed to be genetically determined and to depend on a
single dominant gene. The distinction between ° tasters’
and ‘ non-tasters ’ is not an absolute one, but determination
of the threshold of taste in large groups of people by Hartmann
(1939) and Harris and Kalmus (1949) has shown a clear bi-
modal distribution of thresholds with a small overlap between
the two classes.

As an example of a distribution with more than two
modes d’Arcy Thompson in his book Or Growth and Form
has quoted the size of fish-eggs in a sample netted at
the surface of the sea. The distribution shows four distinct
peaks which can be attributed to the eggs of different species
of fish.
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_A multimodal distribution thus usually represents the
mixture of several different distributions. The converse of
thl_s statement is not, however, necessarily true. If two popu-
lauon‘s with unimodal distributions are mixed together, the
resulting distribution will have two peaks if the two distri-
butions are well separated; but if there is a high degree of
overlap the resulting distribution may have only one rather
brpad peak. It is often a difficult matter to decide on such
evidence whether a population is homogeneous or whether
1t 18 composed of two or more distinct sub-populations.

Skewness

Most distributions are unimodal. The main difference in
sh..apt? among such distributions is in their degree of symmetry.
Distributions whose right-hand tail is longer than the left-
hand one are called skew to the right and vice versa (see Fig.
14). A numerical measure of skewness can be constructed
from the average of the cubed deviations from the mean, which

@) Fro. 14.

(a) is skew to the right

(b) is symmetrical

(c) is skew to the left
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is called the third moment about the mean and is denoted by

my. n
my = ¥ (x—%)>n.
=1

If the distribution is symmetrical then m; will be nearly zero
because positive and negative deviations, when cubed, will
cancel each other out. If, however, the distribution is skew
to the right then mj will be positive because the large positive
deviations, when cubed, will outweigh the negative deviations;
similarly, if the distribution is skew to the left m; will be nega-
tive. For example, the deviations from the mean of the
numbers 2, 3, 4 are —1, 0, 1, whose cubes add up to zero;
on the other hand, the deviations of the numbers 2, 3, 7 from
their mean are —2, —1, 3 whose cubes add up to 18.

It is clear, however, that m; cannot be used as it stands as a
measure of skewness since it is dimensional; if the observations
are expressed in inches then mj will be in cubic inches and so on.
A measure of the shape of a distribution, on the other hand,
should be dimensionless. The most convenient way to obtain
such a measure is to divide m; by the cube of the standard
deviation:

skewness = m,[m3/2.
This measure will not depend on the units in which the obser-
vations are expressed. A symmetrical distribution will have
zero skewness; an asymmetrical distribution will have a positive
or a negative measure of skewness according as it is skew to the
right or to the left.

In numerical work the third moment is most easily calcu-
lated from the formula

my = mfy, —3m} i+ 273,
In this formula m) and m} are respectively the averages of the
squares and cubes of the observations themselves:
n n
my = Y xf[n, my =Y x}n
i=1 i=1

These quantities are called the second and third moments
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about the erigin. The formula follows from dividing by =
both sides of the identity

n

1 (5, —%)3 = ¥ (x? —3x2i a2 —x3)
1=1

R

1

it

n n
= ¥ x}—=3% Y x7+42ni3.

i=1 i=1
‘ Tl_le t}}ird moment, m3, of a set of observations or a frequency
distribution will tend, as the number of observations increases,
to the third moment of the corresponding probability distri-

bution which is denoted by p3 and which is given by the
formula

#3 =y (x—u)3P(x) for a discrete distribution.

T

#3 = [(x—p)3 f(x)dx for a continuous distribution.

Th'e corresponding measure of skewness is p3/o3. As a rough
guide we may consider a distribution with a skewness greater
than 1 in absolute value as highly skew, a distribution with a
ske\fvness between 4 and 1 as moderately skew, and a distri-
butlon. with a skewness between 0 and % as fairly symmetrical.
The distribution in Fig. 11 (p. 50) has a skewness of 1-4. The

extremely skew exponential distribution considered in Chapter
6 has a skewness of --2.

Kurtosis

The average of the fourth powers of the deviations from the

mean is known as the fourth moment about the mean and
denoted by m,:

my =Y (xi—%)4/n.
i=1
This quantity is most easily calculated from the formula

my = my —4m}F-6m, 52 —354

where m) denotes the average of the fourth powers of the
observations themselves. This formula is derived in the same
way as the corresponding formula for the third moment.
As the number of observations increases, my tends to a limiting
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value denoted by p4 which is the fourth moment about the
mean of the corresponding probability distribution and is
given by the formula

pa =Y (x—p)4P(x) for a discrete distribution.
g = [(x—p)4 f(x)dx for a continuous distribution.

The dimensionless quantity my/m2 in the case of an observed
frequency distribution or p4/o4 in the case of a probability
distribution is known as the kurtosis of the distribution and can
be regarded as a measure of its degree of ‘ peakedness’. We
can imagine two symmetrical distributions with the same mean
and variance, the first of which has long tails and rises to a
high, narrow peak and the second of which has short tails and
a low, broad peak. The first is called leptokurtic (from the
Greek Aenrés = thin) and will have a large kurtosis because
the large deviations in the tails will have a big effect when
raised to the fourth power; the second is called platykurtic
(from the Greek ndards = broad) and will have a small kurtosis.

The kurtosis must clearly be positive since fourth powers
are always positive. An example of an extremely platykurtic
distribution is provided by the uniform distribution whose
fourth moment is

1
o = j (e —3)dde = [3(x 1))t = o

and whose kurtosis is therefore
pe 144 g
a4 80

The smallest kurtosis possible is 1; this value is attained by

a random variable which takes only two values with equal

probabilities (see Problem 4.2). At the other end of the scalea

highly leptokurtic distribution may have an infinite fourth .

moment, and consequently an infinite kurtosis (provided its

variance is finite); the ¢ distribution with four degrees of :
freedom is an example of such a distribution. The normal

distribution has a kurtosis of 3 and this is consequently taken
as a standard of comparison; distributions with a kurtosis
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greater than .3 are described as leptokurtic and distributions
with a kurtosis less than 3 as platykurtic. A useful aide-memoire
due to ‘ Student’ (W. S. Gosset) is shown in Fig. 15. The

kurtosis is not of much use for comparing the shapes of distribu-
tions of different degrees of symmetry.

qu. 15. Platykurtic curves have short tails like a platypus,
while leptokurtic curves have long tails like kangaroos
noted for ‘lepping’ (after ‘Student’)

Exercises

4.1, .Find the mean and the median of the 50 observations obtained in
Exercise 3.2 and compare them with their theoretical values.

4.2. Find the mean and the median of the distributions of (@) head breadth
(b) head length in Table 10 on p. 40. [Each measurement was taken to
;he nearest millimetre.]

4:3. Calculate the variance of the distribution of litter size in Table 8 on
p- 29 (a) from the formula

S§2 == Tx2n(x) —ngx?,

and (b) by taking a ¢ working mean ’ of 6, that is to say by taking 6 from
cach litter size before squaring it and also from the mean before squaring
it. - [This simplifies the arithmetic and makes no difference to the answer
because the variance is unaffected by a change of origin.]
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44. If T is the sum of the observations, show that nx2= T%n. It is
often convenient to use this alternative formula for the correction factor
to the sum of squares since the introduction of decimals is left to the end.
Re-work the preceding exercise in this way.

4.5. Find the variance of the distribution of coin weights in Table 9 on
p. 34.

4.6. In the distribution of head breadths in Table 10 on p. 40 code the
class 13— as —3, 134— as —2 and so on and work out the mean and
variance of this coded distribution. . To find the real mean, the coded
mean must be divided by 2 (since the class interval is only 4 centimetre)
and then be added to 14-7, the centre of the zero coded class; check that
this gives the same answer as in Exercise 4.2(2). To find the real variance,
divide the coded variance by 4, since the variance is in squared units.
[Note that this method of coding could not be used for the distribution of
coin weights in Table 9 since the centres of the class intervals are not
evenly spaced.]

4.7. Find the mean and the variance of the distribution of head lengths
in Table 10 (p. 40) by suitable coding.

4.8. Find the mean deviation, the interquartile range and the standard
deviation of the 50 observations obtained in Exercise 3.2 and compare
them with their theoretical values.

4.9. TFind the interquartile range of the distribution of head length in
Table 10 on p. 40, divide it by the standard deviation and compare this
ratio with that of 1-349 for a normal distribution.

4.10. Find the skewness and kurtosis of the distribution of litter size in
Table 8 on p. 29, using a working mean of 6.

4.11. Find the skewness and kurtosis of the probability distribution of the
number of points on two dice.

4.12. In calculating the mean and variance of a grouped frequency
distribution it is assumed that all the observations in a class interval are
concentrated at the middle of that interval. This assumption has no
systematic effect on the mean, but it tends to lead to a slight over-estimate
of the variance, particularly if the grouping is coarse. To counteract this
effect Sheppard suggested that the quantity ¢2/12, where ¢ is the unit of
grouping, should be subtracted from the observed variance. Calculate
the variance, with Sheppard’s correction, for the distributions of (a) head
breadth and (b) head length considered in Exercise 4.6 and 4.7.
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Problems

4.1. Schwarz’s inequality states that, for arbitrary functions g(x) and A(x),

U g(x)h(x)dx]2 < f g2(x)dx f h2(x)dx.

Prove this inequality by observing that
J' [tg(x) — h(x)]2dx = O for all t,

and that if a quadratic function in #, $(¢) == at2}-bt-}-c, is positive for all
values of ¢ the equation ¢(t) = 0 can have no real solution and so b2 —4ac
must be negative. 'What is the condition for the equality to hold?

4.2. Consider a random variable with density function f(x) and with
mean u. By appropriate choice of g(x) and A(x) in Schwarz’s inequality
show that () the kurtosis cannot be less than 1, (b) the kurtosis cannot be
less than the square of the skewness.

4.3. Suppose that a distribution is formed from the mixture in equal
parts of two underlying distributions which are hoth normal with the
same variance ¢% but with different means, p, and g,. Find the mean,
variance, skewness and kurtosis of the mixed distribution and the condition
for it to be bimodal. (See Chapter 7 for the definition and properties of
the normal distribution.)

4.4. Show that the mean deviation of a set of measurements is a minimum
when the deviations are measured from the median, but that the standard
deviation is a minimum when they are measured from the mean.

4.5. If f (x) and g(x) are positive functions of x prove that
[7 s rwa> |

and hence derive Tchebychef’s inequality

g(x) f (¥)dx >a j o)

g(z) = a g@y=a

Prob [| X—p | > ko] < 1

Thus the probability that a random variable will deviate from the mean
by more than 20 is less than }, the probability that it will deviate by
more than 3¢ is less than §, and so on. This inequality is usually very
conservative, but it is useful because it is true for any distribution.




CHAPTER 5

EXPECTED VALUES

It was stated in the last chapter that one of the main reasons
for using the mean and the variance as measures of th-e location
and dispersion of a probability distribution is their mathe-
matical tractability. This is due to the fact that they can bqth
be regarded as examples of Expected values, whose properties
will be discussed in this chapter.

ExpeEcTED VALUES

The mean of a probability distribution is often called the
Expected value of the random variable, denoted by E(X), since it
is the value of the average, ¥, which one would expect to find
in a very large sample. The formula for the Expected value
is therefore

E(X) =Y xP(x) for a discrete variable

or EX) = jxf (x)dx for a continuous variable.

If ¥ = ¢(X) is some function of X, such as X2 or log X, then
the Expected value of 1'is

E(Y) = E[¢(X)] = ¢(x)P(x) for discrete variable.

E(T ) = E[¢(X)] = J¢(x) S(x)dx for a continuous variable.

This is the value which one would expect to find if one took
a very large sample of observations, xq, x5, ..., g, calculated
¢ = ¢(x;) for each observation and then computed the mean
of the yi’s. The variance of the distribution is the Expected
value of (X—pu)2, the third moment about the mean is.the
Expected value of (X —pu)3, and so on.  We shall now consider
the mathematical properties of Expected values. It will be
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assumed that the random variable is discrete; to prove the
following theorems for continuous variables it is only necessary
to replace P(x) by f(x)dx and the summation sign by an
integral sign.

Firstly, the Expected value is invariant under any linear
transformation of the random variable; that is to say, if a
and b are any constants and if ¥ = a+4X, then

E(Y) = E(a+bX) = a+bE(X).

This is intuitively obvious since, if we multiply all the ohserva-
tions by a constant, &, their mean will also be multiplied by 4;
and if we add a constant, q, to all the observations, their mean
will also be increased by this amount. To prove this theorem

rigorously we observe that, if X is a discrete random variable,
then

E(a+bX) =Y (a+bx)P(x) >= Y.aP(x)+Y bxP(x)
= ay P(x) by xP(x) = a-+bE(X).

It is important to remember that Expected values are not
invariant under non-linear transformations; for example,
the Expected value of X2 is mot equal to the square of the
Expected value of X [E(X2) 3 E2(X )] This point was dis-
cussed in the last chapter when the properties of means and
medians were compared.

It follows from this theorem that the variance of a+bXis b2
times the variance of X; for, if we write V(X ) for the variance
of X and p for its Expected value, then

V(ie+bX) = E[(a++bX —a—bp)?]
= E[62(X—p)?] = B2E[(X—p)?] = b2V(X).

This result is also intuitively obvious since, if we multiply
- all the observations by b, then their variance, which is in
square units, will be multiplied by #2; and if we add a constant,
a, to all the observations we shall leave the deviations from the
mean unchanged. For example, if the variance of a distribu-
 tion of heights, measured in inches, is 6 square inches and if we
- multiply all the observations by 2-54 to convert them to centi-
' metres, the variance will become 2-542x6 — 38-7 square
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centimetres; if, however, we subtracted 12 inches from all
the observations we should also subtract 12 inches from the
mean so that the variance would be unaltered.

The second important theorem is that, if X and ¥ are any
two random variables, then the Expected value of their sum
is equal to the sum of their Expected values:

E(X+7) = E(X)+E(Y).

This theorem is also intuitively obvious. For suppose that
paired observations (¥, »1), (x2, ¥2), ..., (¥a, ¥a) have been
made, and that for each pair, (xi, i), their sum w; = x;+-y; is
calculated; it is clear that

s

1

i

gl

Wy = i; (xitpi) = ¥ 2t i;y,-

i 1

from which it follows that @ == %£4-7. The same relationship
must hold between the limiting values of these quantities
in very large samples. For example, suppose that X and 7
are the sitting height and leg length of @ man, so that their sum
is his total height; it is clear that the average height of a group
of men is equal to their average sitting height plus their
average leg length. To prove this theorem rigorously let us
suppose that X and 1 are discrete variables with joint prob-
ability function P(x, ) and with marginal probability
functions Py(x) and P,( ) respectively; then

EX+Y) = 3 (x4 P(x,) =ZVZ xP(x, y)+ ;;yl’(x,y)

= };x; P(x,7)+ ;y; P(x, y) = ;xPl () +;JP2(J’)
— E(X)-+E(T).

Clearly this theorem can be extended to any number of
random variables. It is important because one_often wishes
to study the properties of sums of random variables, particu-
larly in the theory of sampling distributions, which are funda-
mental in statistical inference. It also enables us to prove some
useful relationships between the moments about the mean and
the moments about the origin of a probability distribution.
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The rth moment about the origin, p;, is the Expected value
of X”
pr = E(X7).

The rth moment about the mean, p,, is the Expected value
of the rth power of the deviation of X from its mean value, p:
= E[(X—p)'].

Thus pi, is the same as the mean, p1; u, is the variance and
w3 and py are the third and fourth moments about the mean
used in constructing measures of skewness and kurtosis. It
is often easier to compute the moments about the origin and
therefore it is useful to have formulae which relate the two

kinds of moments. Consider first the variance:
p2 = E[(X —p)?} = E(X2 —2uX+u2)
= E(X?2) —2pE(X)+-p2 = py —p2.
Thus for the uniform distribution, p = } and

1
wy = j dx = [1]8 = §
0

from which it follows that py = § —2% = 7%. The same result

has already been obtained by direct calculation. It can be
shown in a similar way that

p3 = py —3pop+2pu3
and pa = py —4pip+-6psp? —3ud.
These results are, of course, analogues of the results already
derived for the observed moments of a frequency distribution.
The third important theorem about Expected values is that

if X and ¥ are independently distributed then the Expected
value of their product is equal to the product of their Expected

values: E(XT) = E(X)-E (T).

It is important to remember that this result will not usually
be true unless the variables are independent. To prove this

theorem let us suppose that X and ¥ are independent discrete
random variables; then

E(XY) = 2,2;', xyP(x, y) = Zj; xyP1(x) P2( )
= Z xPy(x) ;sz(y) = E(X)-E(Y).
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An important consequence of this theorem is that if X .and Y
are independently distributed, then the variance of their sum
is equal to the sum of their variances:

VX+T) = V(X)+V(T).

For suppose that the Expected values of X and ¥ are £ and 7
respectively; then

V(X+TY) = E[(X+T—E=7
= E[(X—§)+(T—m)]
— B[(X—2 -+ (T =2+ 2AX—E) (T —n)]
— E(X—&2+E(Y—n)2+2E(X—§) . E(Y—)
= V(X)+V(T).
For example, if X and 1 are the numbers of points on two

unbiased dice, then X+ is the sum of tl.le number of points
on both dice, whose distribution is shown in Table 4 on p. 20.

Now E(X) = 3} and
E(X2) = (12422432 442452+-62) = 153

35

0 ) — Bxn) —B(X) = 154 —(3)2 =3

Hence
P pxr) = VXAV = 1R =5
sult has already been found by direct cpmputation.
Th’f‘ﬁ:n\l;:fazce of the difference between two independent
random variables, X—1, is also equal to the sum of . their
(7). This result can obviously

variances since V(—1) = V(¥ /
be extended to any number of independent random variables.

In this section we have prove
about Expected values:

(1) If X is any random variable and if @ and b are constants,
E(a+bX) = a+bE(X).
(2) If X and T are any pair of random variables,

E(X+T) = E(X)+EY).

d three important theorems .
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; (3) If X and ¥ are any pair of independent random variables,
- E(XY) = E(X)-E().
It follows from the first theorem that
Via+bX) = b2V(X)
and from the third theorem that
VX+T) = V(X)+ ()

if X and 7 are independent. These results enable us to find
the mean and the variance of the sum, or of any linear function,
of any number of independent random variables.

CovARIANCE AND CORRELATION

The covariance of a pair of random variables is defined as
the Expected value of the product of their deviations from their
means:

Cov (&, 1) = E[(X—§)(Y—n)].
If the variables are independent the covariance is zero since
E[(X—&)(Y—n)] = E(X—¢§) . E(Y—n) = 0.

This fact has already been used in proving that the variance of
the sum of two independent random variables is equal to the
sum of their variances. However, if the variables are not
independent the covariance will in general not be zero and
_the formula for the variance of X-- ¥ must be re-written as

V(X+7) = V(X)+V(¥)+2 Cov (X, 1).

As its name implies the covariance measures the extent to
which X and 7 vary together. For example, it is clear from
Table 10 on p. 40 that men with long heads tend to have
broader heads than men with short heads. The covariance of
head length and head breadth will therefore be positive since
.a positive deviation of head length from its mean will more
~often than not be accompanied by a positive deviation of
- head breadth; likewise negative deviations of the two’variables
will tend to go together, which when multiplied together
produce again a positive value. If, on the other hand, large
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values of one variable tended to be accompanied by small
values of the other, and vice versa, the covariance would be
negative. It is possible, though unlikely in practice, for
dependent variables to have a zero covariance (see Exercise
5.4).

The theoretical covariance is the limiting value of the
observed covariance of a frequency distribution defined as

n

Y (=2 (0i—))

covariance = =1

n

if the individual paired observations are available, or by the
analogous formula for a grouped bivariate frequency distribu-
tion, In practice the covariance is most often calculated in
order to find the correlation coefficient, r, which is defined as
the covariance divided by the product of the standard deviations
of the two distributions:

(x;—x)(y;,—7)[n _v§ﬁ(xi_—‘f)(yi’“j)

: J (= Bl VEE-DTED )
n n

As the number of observations increases the observed correla-
tion coeflicient, 7, tends towards its theoretical counterpart, p,
defined as

Cov(X, 1)

V@) )

The correlation coefficient is a dimensionless quantity which
can therefore be used, with certain reservations, as an absolute
measure of the relationship between the two variables. If X
and 1 are independent then their covariance and their correla-
tion coefficient are zero. If large values of X tend to be
accompanied by large values of 1" and vice versa, then their
covariance and their correlation coefficient will be positive;
in the extreme case when one variable is completely determined
by the other one in such a way that the points (x;, y;) lie
exactly on a straight line with a positive slope, the correlation
coefficient attains its largest possible value of +1. (See
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Exercise 5.6 and Problem 5.3.) On the other hand, if large
vglues of X tend to be accompanied by small values of 7" and
vice versa, their covariance and correlation coefficient will be
negative; in the extreme case when the points (x;, »;) lie
exactly on a straight line with a negative slope, the correlation
cocflicient attains its smallest possible value of —1. Provided
that the relationship between the two variables is approxi-
mately linear the correlation coefficient provides a reasonable
measure of the degree of association between them, but may
underestimate it if their relationship is non-linear (see Exercise
5.4). The interpretation of correlation coefficients will be
discussed further in Chapter 12.

THE MOMENT GENERATING FUNCTION

. We shall now consider a device which is often very useful
in the study of probability distributions. The moment

generating function (m.g.f) of a random variable X is defined
as the Expected value of ¢,

M(t) = E(#%).

The. m.g.f., M(¢), is thus a function of the auxiliary mathe-
matical variable ¢&. The reason for defining this function is
that it can be used to find all the moments of the distribution.
For the series expansion of ¢/ is

&t = 1+zX+fZ—2)-('3+%{'E 4

Hence

M(t) = E(@®) = 14ty + ‘-ZQi‘,— + ‘;—",'3 o

If we differentiate M(¢) r times with respect to £ and then set
t = 0 we shall therefore obtain the rth moment about the
origin p!,

For example, the m.g.f. of the uniform distribution is

- <[ i [{e] -

_ t 2 B
_4+ﬁ+a+a+m
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If we differentiate this series 7 times and then set ¢ = 0 we find
1 .

that u, = L In particular pj =p =4 and p) =1, as

we have already found by direct calculation.

The moment generating function thus provides a powerful
general method of determining the moments of a probability
distribution. = Its importance in statistical theory does not
‘end here for it also enables us to find the distribution of the
sum of two or more independent random variables. Suppose
that X and ¥ are independent random variables with moment
generating functions M;(¢) and M,(#) respectively. The
m.g.f. of their sum, X417 is

M(t) = E[X*Y)] = E(%eY) = E(¢)-E(eY)

= My (8) M ().

Thus the m.g.f. of the sum of two independent random vari-
ables is equal to the product of their m.g.f.’s. This important
theorem can obviously be extended to any number of inde-
pendent random variables.

For example, if X and 1 are independent random variables
following the uniform distribution the m.g.f. of their sum,

X+7, is t_i (¢—1)2. This is also the m.g.f. of a random

vartable which follows the ‘triangular’ distribution whose
density function is an isosceles triangle:

Sflx) =« 0=x=1
flx) =2—x 1=x<
[The m.g.f. of this random wvariable can be obtained quite
easily by using the result that the indefinite integral of xé” is
Eli(xt—l)e"’.] It follows that X4 ¥ must follow this distribution,
since it is scarcely conceivable that two different distributions
could have the same m.g.f. (See Problem 3.5 for a direct
proof of this result.) This method is very useful in proving
results about the  distribution of sums of random variables,
although it is necessary either to know the answer beforehand
or to be able to recognise the distribution to which the moment
generating function belongs.

5. EXPECTED VALUES 77

Another useful result is that if a random variable X has

m.g.f. M(t) then the m.g.f. of any linear function of X, say
Y =a+4bX, is e*M(bt); for

E(e‘Y) - E(e(a+ bX)t) — E(eatebtx) — eatE(eth) — eatM(bt).

In particular, if u = E(X) then ¢ M(t) is the m.g.f. of
X —u which will generate the moments about the mean in the
same way that M(#) generates the moments about the origin.

These two theorems about the m.g.f. of a linear function
of a random variable and about the m.g.f. of the sum of two
independent random variables enable us to find the m.g.f.
of any linear function of any number of independent random
variables; if the latter can be recognised as the m.g.f. of a
known distribution we have solved the problem of finding
the distribution of the linear function.

It must be remembered that some random variables do not
possess a moment generating function; for example, neither
the ¢ distribution nor the F distribution possesses a moment
generating function since some of their moments are infinite.
To get round this difficulty mathematical statisticians use the
characteristic function defined as

$(t) = E(e*).

This function always exists since |¢*| <1 but it is beyond
the scope of this book since it employs the ideas of complex
numbers and complex integrals.

Exercises

(B8 .Evaluate the mean and the variance of the distribution of the number
of points on 3 dice (a) directly (see Exercise 2.3), (b) by using the mean

and variance of the distribution of the number of points on a single die
(see p. 72).

5.2. If the silver pennies in Table 9 on p. 34 were weighed in randomly
selected groups of five, what would be the mean and standard deviation
of the resulting distribution? [The mean and variance of the original
distribution are given on p. 46 and in Exercise 4.5 respectively.]
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5.3. Prove that Cov(X, —¥) = —~ Cov(X, ¥) and hence show that
V(X~7)=V(X)+V(T) —2 Cov(X, T).

If the distribution of men’s height has a mean of 5 ft 8 in and a §tandard
deviation of 24 in and if the heights of brothers have a correlation of'1},
what is the mean and variance of the difference in height between pairs
of brothers? of the sum of their heights?

5.4. Suppose that X is a random variable taking the values —1, 0 and 1
with equal probabilities and that ¥ == X% Show that X and ¥ are
uncorrelated but not independent.

5.5. Prove that ) B
L(xy— &) (Ji—J) = T jy— nij.
Use this fact to find, by suitable coding, the covariance and the correlation

coefficient between head length and head breadth from the data in Table
10 on p. 40 (see Exercises 4.6 and 4.7.)

5.6. If the paired observations (xy, »), (%g, ¥}, -+vs (xp, y,,)_he exactly on
the straight line y;,= a-}-bx,;, show that (y;—J5) = b(x;—%) afld hf:r'xce
show that the correlation coefficient is 1 or —1 according as 4 is positive
or negative.

Problems

5.1. If X and ¥ are independent random variables, find the third and
fourth moments about the mean of X-+1 in terms of the moments of X
and 1.

5.2. If two quantities X and ¥ have a correlation p and can each be
regarded as being the sum of k independent components yv1th the same
distribution, & of which are common to X and 7, what is the relation
between p, kK and £? If, further, it is required to predict the value of 1
from the value of X, what is the mean square prediction error, E(¥Y—X)2,
in terms of p and the variance of '? [Certificate, 1958]

5.3. (a) Observe that Z[(x;—%)-+t(»;—5)]% > 0 for all ¢ an_d hence sho’w
that /2 < 1. [Cf. Problem 4.1; this is equivalent to proving Cauchy’s
inequality, (Sa.b,)® << TalSbZ.] (b) Observe that V(X-t) = 0 for all
¢ and hence show that p2 <{ 1. (Cf. Problem 4.1.),

5.4. If X is a random variable with Expected value ¢ and if 1 is some
function of X, ¥==¢(X), it is not in general true that E(¥)==¢(£).
However, if we write X == {--¢, then to a first approximation ¢(X) == ¢(£)-+
e¢’(£). Hence show that

E(Y) = ¢(£)
V() = V(X)$%(4).
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"This method of finding the approximate mean and variance of a function
of a random variable is called the Delta technique.

5.5. The time taken for a complete swing of a pendulum of length ! is
2 w+/(l/g), where g is an unknown constant. A physicist takes 20 indepen-
dent measurements, each measurement being of the time taken by a 2-ft
pendulum to complete 100 consecutive swings and he finds that the mean
and the standard deviation of these 20 measurements are 157-1 and 0-4

seconds respectively. Estimate g and attach a standard error to your
estimate. [Certificate, 1954]

5.6. Suppose that X and ¥ are random variables with Expected values

¢ and 5. Write X = ¢-}¢,, Y= y-l-¢,, and, by ignoring error terms of
degree higher than the first, show that

E(XY) + ¢
V(XY)#fznz{ﬂ{(—)_}.K(g) ‘?ESVE’_T)}
& 7 €
5.7. Show similarly that
X\ | ¢
2(7) +5
X\ L8 (VX V) 20X, 1) |
V(T)Tnz{ g T 7? én }

1
(First expand ?about V==1y.))

5.8. The velocity of sound in a gas is given by the formula

when p is the pressure, d the density and s, and s, are the two specific
heats. Supposing p, d, s, and s, may have small errors of measurement,
each distributed independently with zero mean and small coefficient of
variation, find the coefficient of variation of x. [Certificate, 1957]. (The
coefficient of variation is the ratio of the standard deviation to the mean.)

5.9. For a discrete random variable taking the integral values 0, 1, 2, ...

it is often better to use the probability generating function (p.g.f) rather
than the moment generating function. The p.g.f. is defined as

G(s) = E(sX) = P(0)+P(1)s--P(2)s2+ ...
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Prove that
(i) G™MO)==r'P(r). Thus if the p.g.f. is known the whole probability
distribution can be calculated.

() GW()=E[X(X-1)(X-2) ... (X—r+D]. This is the s

factorial moment, from which the ordinary moments can be calculated.

(445 If X and 1 are independent integral-valued random variables,
then the p.g.f. of X--7 is equal to the product of their p.g.f’s.

CHAPTER 6

THE BINOMIAL, POISSON AND
EXPONENTIAL DISTRIBUTIONS

In this chapter we shall consider three important probability
distributions, the binomial, Poisson and exponential distri-
butions. The first two have long histories in statistical theory,
the binomial distribution having been discovered by James
Bernoulli about 1700 and the Poisson distribution, which is a
limiting form of the binomial distribution, by S. D. Poisson
in 1837. The exponential distribution, which can be regarded
as the continuous analogue of the Poisson distribution, has
achieved importance more recently in connection with the
theory of stochastic processes. The normal distribution,
which is probably the most important distribution in statistical
theory, will be considered separately in Chapter 7.

Tur BiNnoMIiaL DISTRIBUTION

Imagine an experiment which can be repeated indefinitely
and which at each repetition, or trial, results in one of
two possible outcomes. For example, the experiment might
consist in tossing a coin, in which case the two outcomes
would be heads and tails, or in observing the sex of a baby,
or in throwing a die and recording whether or not the throw
is a six; in general the two possible outcomes will be called
success () and failure (F'). We shall suppose that at each trial
there is a certain probability, P, of success, and a corresponding
probability, @ = 1— P, of failure; and we shall suppose
furthermore that the probability of success remains constant
from trial to trial and that the results of successive trials are
statistically independent of each other. Imagine now that
the experiment has been repeated 7 times, resulting in a series
of successes and failures, SSFSFF. . .. In many situations the
order in which the successes and failures occur is irrelevant and
the experimenter is only interested in the total number of

81
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successes. Itis therefore natural to ask: Whatis the pro.b.a,bihty
of obtaining x successes and n—ux failures in n repetitions of
the experiment? . . '

To fix our ideas let us return to the coin-tossing experiment
of Kerrich described on p. 2. The original sequence of 10,000
spins of a coin can be regarded as buihlt up of 2900 sequences
each consisting of five spins. Now in five spins of a coin
there can be 0, 1, 2, 3, 4 or 5 heads, and the number of hea(:,ls
is thus a random variable which can take one of these SIX
values. What should be the probability distribution (?f this
random variable on the assumptions that at each spin t.he
probability of heads is §, and that the results of successive
spins are statistically independent of each oth'er?.

The chance of throwing no heads in 5 spins is the chance
of throwing five tails running whichis (%) = 1/32. The chance
of throwing one head and four tails in a particular or‘der, sucl_l as
THTTT is likewise ()5 = 1/32; but there are five possible
positions in which the single head may occur and so the_ oYerall
probability of obtaining 1 head in 5 spins 1s.5/f§2. Slmll?.rly
the probability of obtaining 2 heads and 3 tails is 10/32 since
this can happen in any of the following ways, each of which
has a probability of 1/32 :

HHTTT HTHTT HTTHT HTTTH
THHTT THTHT THTTH

TTHHT TTHTH

TTTHH

The probabilities of 3, 4 and 5 heads can be found in a similar
way, and the probabilities of obtaining 0, 1, 2, 3, 4 and 5
heads are thus 1/32, 5/32, 10/32, 10/32, 5/32 and 1./32 respect-
ively. This probability distribution is compared in Table 11

TasLe 11

The distribution of the number of heads in 2000 sequences of
5 spins of a coin

Total
No. of head: 0 1 2 3 4 5

Fr(;q(l)xenz; : 59 316 596 633 320 76 2000
Relative frequency 030 -158 -298 -316 -160 -038 1-000
Theoretical probability 031 -156 -312 -312 -156 -031 1-000
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with the observed frequency distribution from Kerrich’s
experiment; it will be seen that there is good agreement
between the two.

We will now consider the general case of » trials at each of
which there is a probability, P, of * success ’ and a probability
Q = 1—P, of “failure’. The chance of obtaining x successes
and n—x failures in a particular order, such as x successes
followed by n—x failures, is, by the Law of Multiplication,
P*Q*=%, To find the overall probability of obtaining x successes,
in any order, we must multiply this quantity by the number of
ways in which this event can happen. 1In any particular
case we could evaluate the number of different ways of obtain-
ing x successes and z—x failures by direct enumeration, but
this procedure would clearly become rather tedious and it will
be convenient to find a general formula. This requires a brief
digression on the theory of combinations.

n distinct objects can be rearranged among themselves in
n(n—1)(n—2)..3x2x1 different ways.  For the first
object can be chosen in n ways; once the first object has been
chosen, the second object can be chosen in n—1 ways; then
the third object can be chosen in 7—2 ways, and so on.
This number is called  factorial z° and is usually written n !
for short. For example, the letters 4, B, ¢ can be rcarranged
in 3! = 3x2x1 = 6 ways, which are

ABC BAC CAB
ACB BCA CBA

If, however, the objects are not all distinct, the number of
rearrangements is reduced; for example, therc are only
three ways of rearranging the letters 4, B, B (4dBB, BAB,
BBA4).

To find the number of ways of obtaining x successes in

trials let us write down x §’s followed by n—x F’s and number
them from 1 to n:

S$SS...8 F F .. .F
123 xx+1 x42 n

Each rearrangement of the numbers 1 to # will define a corre-
sponding rearrangement of the §’s and F ’s; for example,
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the rearrangement (n, 2, 3, ..., n—1, 1) corresponds to
FSS...FES. However, not every arrangement of the numbers
1 to n leads to a different arrangemecnt of the §’s and F’s;
in fact all arrangements which merely rearrange the numbers
1 to x and the numbers x-1 to n among themselves correspond
to the same arrangement of the $’s and F’s. Now there are
x! ways of rearranging the first x numbers and (z—x)! ways
of rearranging the last (n—x) numbers among themselves,
and so to each different arrangement of the $’s and F’s there
correspond x!(n—x)! rearrangements of the numbers 1 to »
which give rise to it. Since there are altogether n ! rearrange-
ments of the numbers 1 to n, it follows that there are

n!
x!(n—x)!

different ways of rearranging the $’s and F’s. To check that
this formula gives the correct answer in a case which we have
already considered by direct enumeration, we note that
there are

5! _ 120 _
141 24

ways of obtaining 1 success and 4 failures in 5 trials, and

!
~5_' == .1_29_ = 10
2131 2x6
ways of obtaining 2 successes and 3 failures. To obtain the
correct answer of 1 when x =0 or x = n# we must define 0!
as 1.

We have now found the number of ways in which x successes
can occur in 7 trials, and we have seen that the probability
of each of them is P*Q"~®; it follows by the Law of Addition
that the probability of x successes in # trials is

n! Z ()1 T
P (x) :mPQ

x=0,1,2,..,n

This probability distribution is called the binomial distribution

N
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because the probabilities P(0), P(1), and
; . s , 80 on, are the succes-
sive t ; .
theore(:::ns i the expansion of (Q+P)* by the binomial
(Q+P)" = Q*+nQr=1Py  {pQpr-1 4 pn
= PO)+P(1)+...4P(n—1)+P(N).
This shows immediately that the probabilities add up to 1

as they should do, since Q+P=1. (If
, = 1. the 7 brackets
(Q+P)(Q+P ). (Q+P) are multiplied out the coefficient of

Q*P"=% must be the number of ways :
of ch
of the brackets and P from the remairzlder.) choosing @ from

2 -
P(x) P=03
1 - , n=20
T II L
V23 4TS e 7 s e 0 i i
(x)
3 -
2. P=05 P=03
n=5% n=5
P(x)
q -
] |
L R R R 3 0 1
1 2 3
» 45

Fi1c. 16. The binomial distribution

Some examples of the binomijal distributi i iff
istribution with different
values of P and # are shown in Fig. 16. It will be scen t;c;

as one might expect, the distribution rises to a maximum

valu i i i
thaltle and then falls away again. It can be verified quite easily

P(x—l) _ xQ
PE T e P
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This quantity is less than 1 if xQ is less than (n—x--1)P,
that is to say if x is less than (n+1)P, and greater than 1
otherwise. This means that P(x) increases as x increases
until ¥ reaches the integral value immediately below (z-1)P
and then decreases. For example, if n =10 and P =4,
then (n-+1)P = 5} and so P(x) increases until it attains its
maximum value at x =5 and then decreases. If (n+41)P
happens to be an integer the distribution will have two maxi-
mum values, at (n+1)P—1 and (n+41)P; for example, if
n=>5 and P =1, then (n+1)P =3 and so the distribution
will have maximum values at 2 and 3, which can be verified
from Table 11 on p. 82.

The moments of the binomial distribution are most easily
found from the moment generating function which is

s X\ _ L n ' LN —T
M(t) = E(&) EZO a xl(n—x)! P

= 3 L (Pyrrr = (Q 4P

g=0 x!(n—x)!
We find by differentiation that
M'(t) = nPe(QA+Pet)*~*
E(X) = M'(0) =nP(Q+P)"* = nP.
It is in fact intuitively obvious that this is the mean of the
distribution since if there are, on the average, P successes per
trial, the average number of successes in # trials must be »P.
By differentiating the m.g.f. again and setting ¢ = 0 it will be
found that
E(X2) = M"(0) = nP+n(n—1)P2
so that
V(X) = E(X2) —E%2(X) = nP—nP2 =nPQ..

This result can be proved rather more simply by using the
fact that the variance of a sum of independent random vari-
ables is equal to the sum of their variances. The number of
successes in 7 trials is clearly equal to the number of successes
in the first trial plus the number of successes in the second
trial and so on; that is to say

X =21+2+. .+ = i R

=1
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}thre L, 1s the m.lrnber of successes in the ith trial. Now e
15 a ra..n_df)m variable which takes the value 0 and 1 wit};
probabilities Q and P respectively; hence

E(Z) =P
ELH=rP ‘
V(Q) = E(XH)—E*(Z) = P—P2 = PQ.
It follows that "
BX) = 3 B(Z) =nP

and, since the trials are independent,

V(X) = é V(Z) = nPQ,

'Fl‘his' approach can also be used to derive the m.g.f. of X.
\ hor it 1sfob\fm;1us that the m.g.f. of each of the Zi's is QA Pe;

e m.g.f. of thei i i ’ ich is
(Q_i.Pegf)n‘ ot their sum 1s the product of their m.g.f.’s which is
. The variance of the distribution therefore increases as
;crcases. -If, however, instead of the number of successes

» we consider the proportion of successes, ¥ = X/n, whic};

will take the values 0. 1 In, 2/n 1 wi !
. - > > s eey A, th
binomial probabilities, then / with the appropriate

» E(Y) = E(X)jn — P

V(Y) = V(X)n2 = PQ Jn.

Thl.}S, vyhercas the variability of the number of successes in
n trials Increases, the variability of the proportion of successes
decreases as n increases. This fact provides the answer to a
popu.lar fallacy known as the * Law of Averages’. Accordin

to thls_ ‘Law’, if an unbiased coin has turned up heads tel%
times in succession, then it is more likely than not to turn u

tails next time; for, it is argued, the numbers of heads and tailI;
must in the long run be equal and so the deficit of ten tails
must be made up sooner or later. Itis not however the numbers
but the proportions of heads and tails which will be equal in
the long run., For example, in Kerrich’s experiment (p. 2)

there were 44 heads and 56 tails after a hundred spins, 'and,
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5067 heads and 4933 tails after 10,000 spins; between these
two points the difference between the numbers of heads and
tails has increased tenfold, but the difference between their pro-
portions has decreased tenfold. What will happen to the ten
heads in a row is not that they will be counterbalanced by an
excess of ten tails in the succeeding spins, but that their effect
on the proportion of heads will become progressively smaller
as the number of spins increases.

Further differentiation of the m.g.f. shows that the third
and fourth moments of the binomial distribution are

w3 = nPQ (Q—P)
= 312P2Q 24 nPQ (1—6PQ)

so that its measures of skewness and kurtosis are

Skewness = QL:E
JnPQ.
Kurtosis = 3- (1_6—————@

nPQ,

The distribution is symmetrical only when P =0 =%, It
is skew to the right when P is less than 1 and skew to the left
when P is greater than }, but the degree of asymmetry
decreases as n increases (see Fig. 16 on p. 85). The kurtosis
tends to the standard value of 3 as » increases.

We have already considered an application of the binomial
distribution in a coin-tossing experiment. For a less artificial
example we consider some well-known data on the number
of boys and girls in families of different sizes obtained from
the birth registrations in Saxony in the period 1876-1885;
the data for families of 8 children are shown in Table 12. If
the probability of a male birth is constant and is the same in
ail families, then the number of boys in a family of fixed size
should follow the binomial distribution since the situation is
exactly the same as in the spinning of a possibly biased coin.
If, however, the probability of a male birth varies for any
reason, either from one family to another or within the same
family due to such factors as parental age, then there should
be more families in the extreme classes than the binomial
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formula predicts; to take a reductio ad absurdum, i

only two types of father, those capable of beget’ti;fgﬂ(l)ilrlif wfrrl:
and those capable of begetting only boys, then there w0ul§ be
only two types of family, all boys and all girls.

.T(.) test whether or not Geissler’s data follow a binomial
distribution the expected numbers in the third column of
Table 1'2 were calculated by substituting -5147, the observed
proportion of boys, for P in the binomial prob:;bilities shown

TaBLE 12

The number of boys in families containing 8 children
(Geissler, 1889)

No. of famijlies

A

No. of boys Observed Expected pljz)l;:;(;lgillai:y
(1) 215 165 Q8
’ 1,485 1,402 8PQ7
z 5,331 5,203 28pP2Q6
3 10,649 11,035 56P30Q5
: 14,959 14,628 70p4Q4
J 11,929 12,410 56pP5Q3
6 6,678 6,580 28p6()2
. 2,092 1,994 8P7Q)

342 264 P8
Total 53,680 53,680 1

in tl'm last column and then multiplying this predicted pro-
portion by 5.3,680 to give a predicted number of families
Agreement with the observed data is quite good, although there.
are rather too many families of all boys or all gi’rls. ®
There has been some controversy whether this slight de-
parture fror_n theory is a biological reality or whether it is due
to dcﬁc1enc.1es in the information on the birth registers; subse-
quent studies with new data have come to conﬂicti;lg con-
glusmns. In any case, the departure is very slight and it can
e concluded that the assumptions made in deriving the

binomial distribution i
- are very nearly, if not exactl
In sex-determination in man, v et fulflled

‘“
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It is rather difficult to find frequency distributions which
follow the binomial distribution with any accuracy since most
large bodies of data are heterogeneous. For example, it is
almost certain that data on the fertility of turkeys’ ¢ggs arranged
in the same form as Table 12 would not follow a binomial
distribution since some turkeys are more fertile than others.
The great importance of the binomial distribution in modern
statistical theory lies in its use as a sampling distribution.
If we have observed that, out of 50 eggs laid by one turkey,
40 are fertile and 10 infertile, this can be regarded as a single
observation from a binomial distribution with n = 50 and an
unknown probability, P, that this bird will lay a fertile egg.
The standard methods of statistical inference can now be used
to draw conclusions about P. This argument will be under-
stood better when the reader has studied the chapters on
statistical inference, but it should be clear that this sort of
situation arises commonly and that the binomial distribution
will therefore often be used in statistical inference.

Tur Poisson DiSTRIBUTION

The Poisson distribution is the limiting form of the binomial
distribution when there is a large number of trials but only
a small probability of success at each of them. If we write
p =nP for the mean number of successes and substitute
wu/n for P in the formula for the binomial distribution we
find after a little rearrangement that the probability of x
successes is

(o

If we let n tend to infinity while keeping x and p fixed, the
(n—1) (n—2) (n—x-+41)
YT

terms ~— 2 >V
n n

expression in the last square bracket will tend to ¢7#, since

(1 — ff)"-.-»g‘” and <1 — ‘Lf)_x—ﬂ; hence

will all tend to 1 and the

n n

- T
ek

P(x) —

x=0,1,2, ...

x!

If X and 7 are inde
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'1'his. limiting distribution is called the Poisson  distribution.
It will be observed that it depends on u but not on # and P
separately.

The probabilities add up to 1 as they should do since

0 o 0 H:c B
xZ’o P(x) =¢ zZO = Fet =1,

:The function of the factor e~*, which does not vary with »
is thus to ensure that the probabilities add up to 1. T he
moments of the distribution can be found by substitliting
fqr ?zP in the formulae for the moments of the binomizﬁ
distribution and then letting P tend to 0 and Q to 1. Both
the mean and the variance are equal to u; the equality of the
IITC&I-I and the variance is a useful diagnostic feature of the
.dlstnbution. The skewness is 1/v/u, so that the distribution
1s always skew to the right, but the degree of skewness de-

creases as w increases. The kurtosis is 3+_1 which tends to

. #H
the standard value of 3 as o 1ncreases.  These results can be

verified by direct calculation (see Problem 6.2).

Another lmportant property of the distribution is that the
sum. of two. md.ependent Poisson variates itself follows the
Poisson distribution. For the m.g.f. of the distribution is

M(t) = E(etX) =g H f etzf_‘f — g~ H i (F’et)z = g Hpnet
x! =0 x! )

=0

: : pendent Poisson variates with means u
and v respectively then the m.g.f. of their sum is

e Hero—vovet _ —(n+ V) +vyet

which is the m.g.f. of a Poisson variate with mean g+ v, For
example, we shall see later that the number of radio‘activc
f:hsmtegratxons in a fixed time is usually a Poisson variate:
if we measure the pooled output from two or more sources of
radloactwg disintegration it will also follow this distribution
'_I'hc P.01sson distribution was first derived in 1837 by S D.
Poisson in a book which purported to show how probability
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theory could be applied to the decisions of juries, but it attracted
litle attention until the publication in 1898 of a remarkable
Little book, Das Gesetz der kleinen Zahlen, in which the author,
von Bortkiewicz, showed how the distribution could be used
to explain statistical regularities in the occurrence of rare
events. As examples von Bortkiewicz considered the numbers
of suicides of children in different years, the numbers of suicides
of women in different states and years, the numbers of accidental
deaths in different years in 11 trade associations and the
numbers of deaths from horse kicks in the Prussian Army in
different years. The last example provided the most extensive

data and has become a classical example of the Poisson distri-
bution.
TasLe 13

The annual numbers of deaths from horse kicks in 14 Prussian
army corps between 1875 and 1894

Observed  Expected

Number of deaths frequency frequency
0 144 139
1 91 97
2 32 34
3 11 8
4 2 1
5 and over 0 0
-
Total 280 280

Von Bortkiewicz extracted from official records the numbers
of deaths from horse kicks in 14 army corps over the twenty-year
period 1875- 1894, obtaining 280 observations in all. He argued
that the chance that a particular soldier should be killed by a
horse in a year was extremely small, but that the number of men
in a.corps was very large so that the number of deaths in a corps

. in a year should follow the Poisson distribution. The data are
given in Table 13. The total number of deaths is 196, so that
the number of deaths per corps per ycat is 196/280 = 70,
which can be used as an estimate of u. The expected numbers
in the third column have been calculated by substituting 70

- e
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for n in the Poisson formula i
. and then multiplying by 280;
i that is to say, they are the successive terms in thza) s}c’:riegs ’ ’
280e~07 (1, 0.7, 0.7, 973 07
(1,07, 5 6 of and so-on).

; The-y are in good agreement with the observed numbers. Th
i variance of the distribution is +75 which is nearl . 5
the mean. Ty equal to
T}{e examples cited by von Bortkiewicz aroused consider-
a]_ale interest by thf:ir rather startling nature but they may have
%we:n rise to a misleading impression that the Poisson distri;
ution i only a statistical curiosity. The first biological
ftppl.lcatlon of the distribution was given by ‘Student’ (1?)18?)
in his paper on the error of counting yeast cells in a haemo-
cytometer, althqugl_l he was unaware of the work of Poisson
a‘nd von ?ortklewmz and derived the distribution afresh
(‘ Student’ was the pen-name used by W, S. Gosset who waé
employed by Messrs Guinness in Dublin; employees of the
brewery were not allowed to publish under their own name
The source of his interest in yeast cells is obvious.) A haem .
cz‘tor;;efer is essentially an instrument for countin;g the numbgl-"
;)S (;crz ;:(ril a c?%l-:rt:lslpensmn. A_known volume of the suspension
5 mpber o?m ormly over a slide which is ruled into a large
i Cans?ﬁlareg. The numbers of cells in the individual
* en be counted under a microscope. It is usual

to count only a sample of the squares, and this of course ma
-1ntroduce an error since the number of cells will va fronz.

squarc to square. ‘Student’ was concerned to calcugt’ th

Ea%nﬁude of the error introduced in this way. He arcguel(‘i
dijtri{) uiigzm}ie; of cells in a square should follow a Poisson
Csributior ;ha tt ough he did not l.mow it by that name, since
e (1 1 0.3 pa;)rncular cell will fall in a particular square
iy o so. 11 ), but thfare are a large number of cells which
may o ;;ou ttz fiested this theory on four distributions which
ad bee .TI}I]_ ed over the Wholc? 400 squares of the haemo-
i(}lrea ftc;f. . e results are given in Fig. 17 which gives a good
ihcrezses e Er }fmge of the shal?e of the distribution as the mean
inerea . . e agreement with the expected numbers, calcu-
: in the same way as before, is excellent. It will also
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be obscrved that in all cases the variance is approximately
equal to the mean. . o
qAnother well-known application of the Poisson distribution
is found in the disintegration of radioactive substances. In a
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F1c. 17. Data from ‘Student’ on thedistribution of the numbersof
yeast cells counted over the 400 squares of the haemocytometer.
Observed number of squares. - - - - - Expected number
of squares

classical experiment Rutherford, Geiger and Bateman (1910)
counted the number of a-particles emitted by a ﬁlng of polonium
in 2608 successive intervals of one-eighth of a minute. They
argued that this should follow a Poisson distribution, although
again they did not know it by this name and were unaware

W R ———
e = 2 T VRE S —— e o

S i g v
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of any previous work on the subject, since there is a very large
number of atoms each of which has a very small chance of
disintegrating in one-eighth of 2 minute. Their data are given
in Table 14 and can be seen to be in excellent agreement with
theory. The mean of the distribution is 3-87 and the variance
3-69.

TaBLE 14

The distribution of the number of a-particles emitted by a film of
polonium in 2608 intervals of one-eighth of a minute

No. of intervals

No. of a-particles Observed Expected
0 57 54
1 203 210
2 383 407
3 525 525
4 532 508
5 408 394
6 273 254
7 139 140
8 45 68
9 27 29
10 10 11
11 4 4
12 0 1
i3 1 1
14 1 1
Over 14 0 0
Total 2608 2608

The Poisson distribution has thus a wide variety of appli-
cations in situations where events happen randomly in space
or in time. The occasions on which the distribution fails to
fit the facts are almost as interesting as those on which it holds
since deviations from theory indicate some degree of non-
randomness whose causes can be investigated. Table 15 shows
the distribution of the number of accidents in 5 weeks among a
group of women working on high explosive shells in a muni-
tions factory during the 1914-1918 War (Greenwood and
Yule, 1920). One would expect this distribution to follow




96 PRINCIPLES OF STATISTICS

Poisson’s law if an accident can be regarded as a random
event happening to a woman, since for each woman there is
a very small probability that she will have an accident in a
short interval of time, such as five minutes, but there is a large
number of such intervals in 5 weeks. (This argument may
seem rather artificial; an alternative derivation of the Poisson
distribution in cases like this is given in the next section.)
It is clear, however, that there are too many women in the
extreme groups, with either no accident or with three or more
accidents, and too few with only one accident; this is reflected
in the fact that the variance is -69 compared with a mean of
47. Greenwood and Yule explained the discrepancies by

TasrLe 15

The distribution of the number of accidents among a group
of women in a munitions factory

No. of accidents 0 1 2 3 4 5 Over5 Total
Observed no. of women 447 132 42 21 3 2 0 647
Predicted no. of women 406 189 4 7 1 0 0 647

supposing that the group of women was not homogeneous
but that they differed in their accident proneness, that is to
say in the probability that they will have an accident in a short
interval of time; this would obviously increase the spread of
the distribution. (See Problem 8.9.)

Another example, which demonstrates the way in which
deviations from Poisson’s law may be generated, is quoted
by Bartlett (1960) from a paper by Bowen (1947). This paper
gives the distribution of adult beet leaf-hoppers on 360 beet
in a field on two dates (20th May and 26th August) in 1937.
‘On the first date the leaf-hoppers have just arrived and have
distributed themselves at random according to Poisson’s
law; whereas the second count represents the second genera-
tion which has developed on the same beet from the indi-
viduals in the first generation, and cannot be represented by a
Poisson distribution owing to the clumping effect.

Most deviations from Poisson’s law have the effect of increas-
ing the numbers in the extreme classes, which is reflected in an
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Increase in th? variance. An interesting example of a decrease
n the.scz.itter 1s given by Berkson et al. (1935) who investigated
the distribution of blood cells in a. haemocytometer. They
fou.nd tflat, while the distribution of white blood cells followed
P01ss9n s law very well, there were slightly too few red blood
cells.m the extreme classes; in the latter case the variance was
consistently about 85 per cent of the mean. They explaincd
this fa}ct by the observation that while they were settling on
the slide the red blood cells could be seen to collide and to
repel each other into neighbouring squares; this would have
the eﬁ'e.ct of evening out their distribution and so of reducing
the. variance slightly. This behaviour was not observed in
white blood cells or yeast cells, which follow the Poisson

distribution, since the
! y are rather amorphous and i
like red blood cells. P ot elastic

TaE EXPONENTIAL DisrriButION

A cont_inuoys, 'posi.tive random variable is said to follow the
exponential distribution if its probability density function is

S(x) =2, x>0,

=

(%)

Fic. 18, Density function of the e ial distributt
: Xponential d
different values of ) ? siribution for

The cumulative probability function is

F(x) = Prob [X<x] — f Nty — [t — | g
1]
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This function increases from 0 to 1, as it should do, as x in-
creases from 0 to co. The distribution is illustrated in Fig. 18
for different values of A. It will be seen that its shape is always
the same, but that its scale increases as A decreases.

The mean of the distribution is

Iw Axe—¥dx.

0

If we make the substitution y = Ax this integral becomes

1 (= 1 ST |
- vy — | —(yr1)er| =2
ALJM’ Iy )\[ (y+1)e ] 3

0

The mean thus increases as A decreases; such behaviour
might be anticipated from Fig. 18. The median is the value
of x for which

Flx) =1—e* =14}

and is thus —log 4/A = -693/A. The mode of the distribution
is at the origin, and is thus not a sensible measure of the
¢ centre * of the distribution. It will be noticed that the median
is very nearly two-thirds of the way between the mode and the
mean,

The higher moments are most easily found from the moment
generating function which is

M(t) = A J‘w ey = /\fw e~ A0y — /\_At

0 0

The variance is 1/A2, so that the standard deviation is equal
to the mean. The third moment is 2/A3, so that the skewness
is +2. Itis clear from the figure that the distribution is highly
skew to the right.

The exponential distribution arises naturally as the distri-
bution of waiting times in many situations in which events
can be regarded as occurring randomly in time. Let us con-
sider radioactive disintegration as an example. If, on the
average, there are A disintegrations per second, then the aver-
age number of disintegrations in ¢ seconds must be At. Hence,
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if disiptegrations occur at random, the number of disintegra-
tions in ¢ seconds will follow a Poisson distribution with mean
{\t; in I_)articular, the probability that there will be no dis-
Integrations in ¢ seconds is e=*. But this is the same as the
probability that we shall have to wait more than ¢ seconds
before the first disintegration occurs. If, therefore, we write
T for the waiting time before the occurrence of the first
disintegration, then
Prob [T >t] = e *
and Prob [T<t] = 1 —eH,

B}xt 'the 'latter is the cumulative probability function of the
distribution of waiting times; it follows that T follows an
exponential distribution with parameter .

TasLE 16

Distribution of the time interval between successive
disintegrations of thorium

Time interval Observed  Expected

(seconds) frequency  frequency
0-% 101 109
3-1 98 93
1-2 159 149
2.3 114 110
3-4 74 80
4.5 48 59
5-7 75 76
7-10 59 54
10-15 32 28
15-20 4 6
20-30 2 2
Over 30 0 0
Total 766 766

In practice, one has records of the times, £, ¢y, #3, t4 and so on,
at which successive disintegrations occurred. If one considers
each disintegration in turn as the origin of time it will be
seen that the differences between the times of successive
disintegrations, #;, #,—t,, l3—ty, t4—t3 and so on, should
follow the exponential distribution. A typical frequency
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distribution, taken from a paper by Marsden'and .Baxtratt
(1911) on the radioactive disintegration of t}}quum, is given
in Table 16. There were altogether 766 disintegrations in
9496 seconds, so that A, the mean number of disintegrations
per second, can be estimated by 766/2496 = -3069. (It
may be noted in passing that the average time between

(=]

b

o

Cumulative relative frequency (cumhlativﬁ probability}

Relative frequency {probability density) per second

0 5 10 15 0 5 10 15 20
Time (secs.) Time (secs.)

Fic.19. (a) The histogram and {b) the cumu}ativc relative
frequency of the data in Table 16 together with the corre-
sponding theoretical curves

successive disintegrations must be 2496/766 = 1/-3069 = 3-26
seconds.) The expected numbers have been calculated_ _by
substituting this value for A in the cumulative probability
function. Yor example,

Prob [1< T=2] = Prob [T=2] —Prob [T=1]
—F(2)—F(1) = e*—¢ = g—3069 _p—6138 — .]195

so that the expected number of intervals between 1 and 2 -

seconds is 766 %195 = 149. Agreement with _the observed
numbers is good. The histogram and the cumulative frequency
function are shown in Fig. 19 together with the thepretwal
curves for A = -3069. Note the importance of using the
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relative frequency per second in the histogram when the class
intervals are different. '

Fig. 20 shows another example of an exponential distri-
bution from a paper by Fatt and Katz (1952) on the spon-
taneous miniature potentials arising from the end-plates of
resting muscle fibres. The fact that the time interval between
successive discharges follows an exponential distribution is
strong evidence that they are occurring at random; the authors

Fia. 20. Histogram of the time
interval between successive dis-
charges from resting muscle
fibres together with the corre-
sponding theoretical curve

Refative frequency (probability density) per second

-5 10 -
Time (secs.)

suggest that they may be due to thermal agitation of ions across
the nerve membranes. '

In deriving the exponential distribution for waiting times
we relied on the fact that the number of events in a fixed
interval of time follows the Poisson distribution. The distri-
bution can also be derived by an independent argument which
may be illuminating. We suppose that in a short interval
of time, 4¢, there is a chance A4¢ that an event will occur;
if 4¢is very small then the chance that more than one event will
occur is negligible, so that the chance that no event occurs
is 1—Adt. It will be assumed that the chance of an event
occurring in a short time does not depend on how many events
have already occurred (this is what we mean by saying that

“events occur at random). If we write Py(¢) for the probability
that no event occurs before time # then the probability that no
event occurs before time (£-+4t) is the probability that no event
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occurs before time ¢ multiplied by the probability that no event
occurs between time ¢ and time (¢4-4¢); in symbols,

Py(t+4t) = Py(t)[1—adt]

Py(t+4t) —Po(t)
2000y 2y,

If we let At tend to zero, this gives rise to the differential
equation

or

dPy(?)
el A M QR A Polt
dt o(t)
whose solution is
Py(t) = e,

(The initial condition is Py(0) = 1.) Now Py(t) = 1 —F (1),
from which it follows that the waiting time until the first
event occurs follows an exponential distribution.

This argument can be extended to derive the Poisson
distribution for the number of events occurring in a fixed time ¢.
Let us write P,(t) for the probability that exactly n events have
occurred by time &. Now =z events can occur by time (t-+A4¢)
in two ways: (1) n events occur by time #, and no events
between times ¢ and ¢+4¢, or (2) (r—1) events occur by time ¢,
and one event between times ¢ and t44¢ (we are assuming
that n = 1); hence

Po(t-4+-41) = Pa(t)[1 —MAE]+Pa-1(¢) A2

o Pn(t+A£)t—Pn(t) — MPa_1(t) —Pa(H)].

If we let 4t tend to zero, this gives rise to the differential
equation

d

%’9 — A[Pay(f) —Pald)]-

This equation can now be solved successively for n =1, 2, 3
and so on. Thus we already know that Py(t) = ¢=* ; hence

f’f# — MPy(t) —Py(£)] = Ae—AP;(2)
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whose solution is
Pl(t) == Ate_)‘t

w.ith the .initial condition Py(0) = 0. We can now write down a
differential equation for Py(#), and s0 on. It will be found that

Pa(t) = "
n!

WhiCl’-l is the Poisson distribution with o= AL

This argument is typical of the type of argument used in the
s.tudy of stochastic processes, or random Processes occurring in
time, The very simple model which we have considered can
be modified and extended in several ways. For example, if
we are studying the growth of a natural population it might’be
reasonable to suppose that if # individuals exist at time ¢
t.hen the prqbability that a new individual will be born beforé
tll'.IlC i+4t is Andt, where X is the birth-rate per individual;
this stochastic process is called a birth process. We mi hé
al.so w_lsh to take into account the probability that an individial
will dle_, ‘which would give rise to a birth and death process
As additional complications we might suppose that the birt};
and death rates per individual are density dependent, that is to
say are fun_cuons of n, or depend on the age of the i;dividual
In general it can be said that the more complicated the model'
the more likely it is to fit the biological or physical situation
but the less tractable it becomes mathematically; as in other
branches of applied mathematics a compromis’c has to be
sought between these two factors. The theory of stochastic
processes has found a wide variety of applications such as
cascade processes in physics, the formation of queues, the
spread of epidemics, the growth of bacterial popula‘;ions
telephone engineering and so on. The interested reade;

should consult one of the book ;
as Bailey (1964). ooks devoted to the subject, such
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Exercises

6.1. In a table of random numbers, digits are arrfmged. in groups of four.
On.e proposed test of randomness is the poker test in which the groups are
classified as /

() all four digits the same ]
(i) three digits the same, and one different
(i) two of one digit and two of another
(iv) two of one digit and two different digits
(v) all four different

and the observed frequencics compared with e)fpectation. Find the
probabilities of each of these events. (P. P. P, Hilary, 1963.]

i £ strain of péa and allowed
6.2. When Mendel crossed a tall with a dwar: 0
the hybrids to self-fertilise he found that § of the‘oﬂ'sprmg were tall and }
dwarf. If9 such offspring were observed, what is the chance (a) tha;t less
than half of them would be tall?; (b) that all of them would be tall?

i i d frequency distribution
6.1. Find the mean and variance of'the.obs.crve !

ar?d of the theoretical probability distribution in Table 11 on p. 82 directly,
using the exact probabilities in fractional form for the latter; c?mpatrei
these values with those obtained from the formula for the binomia
distribution with n==5 and P==#%.

6.4. Weldon threw 12 dice 4096 times, a throw of 4, 5 or 6 being called
a success, and obtained the following results:

12 Total
s01234567891011
Nof‘“lfltlsllll:;:;sc 0 7 60 198 430 731 948 847 536 257 71 11 0O 4096

istributi nd compare it with that of
4} Calculate the mean of the distribution an '
a gbi)nomial distribution with P==1%; find the observed proportion of

er throw (p)- o o
SUC(‘;;-‘SSEZII::Uhte the variance of the distribution and compare 1t with that

. .y e N — 1. (i) with P = p.
of a binomial distribution (i) with P .;j 3 (d) wit P=
(¢) Fit a binomial distribution, (i) with P =14, (ii) with P =0.

i he sex ratios in Table 1 on p. 3 (a) in the
(lsl‘i.giof;‘s/z:)lfl'Jl %ﬁg;:rexd\:a{bl?rilget}?::‘ :'ural districts' of -Dorset., and compare the;n
with the theoretical variances of a proportion (a) with n == 100,000, ()
with n==200.
6.6. The following is one of the distribl'ltions of yeast cells observed by
¢ Student *. Fit a Poisson distribution to 1t.

. No. of yeast cells 0 1 2 38 4 5 6 Total
No. of squares with
this no. of cells in it 103 143 98 42 8 4 2 400
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6.7. The frequency of twins in European populations is about 12 in every
thousand maternities. What is the probability that there will be no twins

in 200 births, (a) using the binomial distribution, (b) using the Poisson
approximation?

6.8. When a bacterial culture is attacked by a bacterial virus almost all
the bacteria are killed but a few resistant bacteria survive. This resistance
is hereditary, but it might be due ¢ither to random, spontaneous mutations
occurring before the viral attack, or to mutations directly induced by this
attack. In the latter case the number of resistant bacteria in different
but similar cultures should follow the Poisson distribution, but in the
former case the variance should be larger than the mean since the number
of resistant bacteria will depend markedly on whether a mutation occurs
early or late in the'life of the culture. In a classical experiment Luria &
Delbruck (1943) found the following numbers of resistant bacteria in ten
samples from the same culture: 14, 15, 13, 21, 15, 14, 26, 16, 20, 13,
while they found the following numbers in ten samples from different
cultures grown in similar conditions: 6, 5, 10, 8, 24, 13, 165, 15, 6, 10.

Compare the mean with the variance in the two sets of observations.
Comment.

6.9. Calculate the mean and the standard deviation of the distribution
in Table 16 on p. 99 and show that they are nearly equal.

6.10. If traffic passes a certain point at random at a rate of 2 vehicles a

minute, what is the chance that an observer will see no vehicles in a period
of 45 seconds?

Problems

6.1. The rth factorial moment, ppy, is the Expected value of X(X—1) ...
(X—7-+1). Find the rth factorial moment of the binomial distribution (a)

by direct calculation, (b) from the p.g.f. and hence find its mean, variance,
skewness and kurtosis. (Cf. Problem 5.9.)

6.2. Do the same calculations for the Poisson distribution.

6.3. If X and ¥ are independent Poisson variates with means p and v,
show that

¢ = (u+v) c
Prob [X+¥=—¢] = ) Prob [X—i& Y:a-i]:e_«#iﬂ.
i=0 !

6.4. Suppose that a suspension of cells contains u cells per c.c. so that the
number of cells in 1 c.c. follows a Poisson distribution with mean p; and
suppose that the probability that a cell will survive and multiply to form
a visible colony is P, so that the number of colonies formed from a fixed
number of cells follows a binomial distribution. Show that the number of

colonies formed from 1 c.c. of the suspension follows a Poisson distribution
with mean pP.
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6.5. If skylarks’ nests are distributed at random over a large area of
ground show that the square of the distance of a nest from its nearest
neighbour follows the exponential distribution. (This fact has been used
to test whether there is any territorial spacing of nests.)

6.6. In a pure birth processitis assumed that an individual has a probability
AA? of splitting into two during a short time interval A¢, so that, if there
are n individuals at time £, the probability that a new individual will be
born before time ¢-}-At is AnAt. Show that P,(¢), the probability that
there are n individuals at time ¢, satisfies the differential equation

sz;t(t) = = AP, (8)+(n— 1) APy 4 (1) "

v

and hence show that if there is one individual at time ¢ = 0,
P,,(t) — e—'lt(l __e—}.t)n—l_

6.7. Suppose that an urn contains N balls of which R are red and N-R
black, and that n balls are drawn from the urn at random. If the balls
are replaced after they are drawn the number of red balls in the sample
will follow a binomial distribution with P ==R/N but if they are not
replaced the proportion of red balls in the urn will change from one trial
to the next and the distribution will be modified. Show that, under
sampling without replacement, the number of red balls in the sample
follows the hypergeometric distribution

()

()= e
2 T W (R—x)!
is the numbecr of combinations of x objects out of R.
Evaluate and compare the binomial and hypergeometric distributions,

appropriate to sampling with and without replacement, for a sample of
3 balls drawn from an urn containing 4 red and 6 black balls.

P(x) = x==0, 1, 2, ..., smaller of R or n

where

6.8. Let £,= 0 or 1 acording as the ith ball drawn in sampling without
replacement is black or red. Clearly the probability that the sth ball is
red is P = R[N and the probability that both the ith and the jth balls are
red is R(R—1)/N(N-1). Find E(Z;), V(Z;) and Cov(Z;, Z;) and hence
show that

E(X)==nP

n—1
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Compare these results with those for the binomial distribution. Verify
them directly for the distribution evaluated in the previous problem.

6.9. In a series of independent trials with a constant probability of success
show that the probability that there will be exactly x failures before the
first success is

P(x) = Q*P, x=0,1,2, ...

This distribution is called the geometric distribution. It has applications

as the distribution of waiting times for events occurring at discrete intervals

of time and is thus the discrete analogue of the exponential distribution.
Find the probability generating function of the distribution. Hence

find an expression for ppry and use this expression to find its mean, variance
and skewness.

6.10. Suppose that members of an effectively infinite population can be
classified not just into two but into £ classes and that the probability that
a member belongs to the ith class is P,. Show that if z members are chosen
at random the probability that exactly », will belong to the first class,
xp to the second class and so on is

n!
Pxy, x5 oney Xy :m—le PP P
"This distribution, which is an obvious extension of the binomial distribution,
is called the multinomial distribution. The probabilities are the terms of the
expansion of (Py+4-Py+t...—-P)"
Find the Covariance of X; and X; (a) directly, (b) from the formula
V(XA-X,) = V(X)+V(X,)+2 Cov (X, X)).




CHAPTER 7

THE NORMAL DISTRIBUTION

Order in Apparent Chaos—I know of scarcely anything
s0 apt lo impress the imagination as the wonderful form of
cosmic order expressed by the * Law of Frequency of Error ™.
The law would have been personified by the Greeks and deified,
if they had known of it. It reigns with serenity and in complete
self-effacement amidst the wildest confusion. The huger the
mob, and the greater the apparent anarchy, the more perfect is
its sway. It is the supreme law of Unreason.

Francis Galton: Natural Inheritance (1889)

On a donc fait une hypothése, et cette hypothése a €ié appelée
loi des erreurs. Elle ne s’obtient pas par des déductions rigour-
euses. . . . *“ Tout le monde y croit cependant,” me disait un
Jjour M. Lippmann,  car les expérimentaleurs s'imaginent que
Cest un théoréme de mathématiques, et les mathématiciens
que C’est un fait expérimental .

H. Poincaré : Calcul des probabilités (1896)

The normal distribution was discovered in 1733 by the
Huguenot refugee Abraham de Moivre as an approximation to
the binomial distribution when the number of trials is large.
The distribution is more usually associated with the name of
Gauss who derived it in 1809, in his Theoria motus corporum
coelestium, as the law of errors of observations, with particular
reference to astronomical observations. Gauss argued that if a
number of observations of the same quality are taken, each
subject to random error, the natural way of combining them
is to find their mean. He then showed that this is the best way
of combining them (by which he meant, roughly speaking,
the method of maximum likelihood) only if the errors follow
what is now called the normal distribution, from which he
concluded that they must do so. This rather curious argument
does not carry much conviction today, but Gauss was also
able to show empirically that errors in astronomical observa-
tions do follow the normal curve with considerable accuracy.
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The real reason for the importance of the normal distribu-
tion lies in the central limit theorem which states that the
sum of a large number of independent random variables will
be approximately normally distributed almost regardless of
their individual distributions; any random variable which can
be regarded as the sum of a large number of small, independent
contributions is thus likely to follow the normal distribution
approximately. This theorem was first proved by Laplace
in 1812 but his proof was so complicated as to be almost
incomprehensible and the significance of the theorem was not
realised until Quetelet demonstrated in 1835 that the normal
curve described the distribution not only of errors of measure-

_ment but also of biological variables such as human height.

It was soon discovered that many other biometrical variables
followed this distribution; it was at this time that it acquired
the name of the normal distribution, which any well-behaved
variable ought to follow.

There is no doubt that the importance of the normal dis-
tribution was exaggerated in the first flush of enthusiasm,
typified in Galton’s encomium quoted at the beginning of the
chapter. Later statisticians took a more sober approach,
illustrated in the quotation by Poincaré, and recognised that
many distributions are not normal. Nevertheless the central
limit theorem has ensured for this distribution its central
place in statistical theory. In this chapter we shall first
describe the mathematical properties of the normal distri-
bution, and then discuss the central limit theorem and its
applications.

ProperTIES OF THE NorMAL DISTRIBUTION

A continuous random variable is said to be normally distri-
buted with mean p and variance o2 if its probability density
function is

Sl = ——

— e"%(‘”—ll)zlaz’
o\/27r

— 00X 0

This formula defines a family of distributions depending on
the two parameters u and o. A change in the mean, p, shifts
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the distribution bodily along the x-axis; a -challz.glc 11nVitIl:e
standard deviation, o, flattens it or cozlnprf.:ls)ses. it w liﬁu :;ateg
i i iti The distribution is

its centre in the same position.

irf Fig. 21. Its shape has been likened to that of a bell and a
cocked hat.

8T

l (b)

S5k

f(X)."“ (c)

.3-

2 @)

4l
e A

X

Fic. 21. The density function of the normal distributicl)n with
@p=00=1 (B p=00=14 () p=3 0=

It is proved in the Appendix to this chapter that th/e il/r;_a
i ion 1 ity; the factor 1/o4/27

der the density function 1s unity;
::Illsue:es that thisisso. The really important part of the formula
% —p\2

is the exponential of —} . This implies that the pro-

7 .
ili ity depends only on the distance of x from its
lr)r?:alixlt\}r’al(lilir:it};xprlzssed as a}[,)roportif)n of the stapdard devl1a(;
tion, o. The density function attains its maximum va 11;
of 1 /a\/§1—r = 4/c when ¥ = p and f-alls off symmetrically
on ecach side of u. It follows immediately that the mean,
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median and mode of the distribution are all equal to p and

that the odd moments about the mean, and in particular
the third moment, w3, are all zero,

The even moments are most
the moment generating function :

111

easily found by computing

1 o 2
M(t) = — f e —we?y,
oV J-w

If we expand the exponent in this i

the square it will be found tha
form:

ntegral and then complete
t it can be expressed in the

eut+ 4022 (oo

oV2r J-w

To find the moments about the mean we must consider

M(t) =

e~ Ha—p —azt)llazdx = gutt4a?

4

414 616
M) = Loy T gy o

+...

Now p, is the coefficient of ¢ multiplied by r!. It follows
that py = 02, as was stated above, and that pu, = 304, The
kurtosis is therefore 3, which is the reason why this is taken as
the standard kurtosis. The rth moment, if 7 is even, is

=135, (r—1)o",

If X is normally distributed with mean p and variance o2,
then any linear function of X, say ¥ = a-bX, is also normally
distributed with the appropriate mean and variance, (The
mean is a+bp and the variance b262) This follows from the
fact that the formula for the normal density function contains
the arbitrary location and scale parameters p and o; a change
in the scale and origin of the observations will change these
parameters but will not alter the shape of the distribution.
To prove this result mathematically we first recall that if the
m.g.f. of X is M(¢) then the m.g.f. of ¥ =a+hX is e“M(bt).
If X is normally distributed with mean

i and variance o2
then its m.g.f. is

M(t) = praome
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‘and the m.g.f. of ¥1is
M (bt) = glatbmt+3b2e22

which is the m.g.f. of a normal variate with the appropriate

mean and variance.
In particular, if X is normally distributed with mean un

and variance o2, then { = X follows a normal distribution
p ‘

with zero mean and unit variance. < is called a standard normal
variate; it is conventional to use the symbols ¢(z) and @(2)
for the density function and cumulative probability function
respectively of the standard normal distribution. These
functions are tabulated at the end of the book; the distri-
bution of any normal variate can be found from them. For,
if X is normally distributed with mean p and variance o2
and if we write F(x) and f(x) for its cumulative probability
function and density function, then

F(x) = Prob [X=x] = Prob [)_(:H < x_—ib] _ qj(w)

For example, the intelligence quotient (I.Q).), measured by
the Stanford-Binet test, is approximately normally distributed
in the general population with a mean of 100 and a standard
deviation of about 16. The probability that an individual
chosen at random will have an I.Q. less than 120 is therefore

Prob [X<120] — Prob [X -l—é00 < 1-25] — ®(1-25) = 0-8944.

The density function at this point is ¢(1-25)/16 = -1826/16
== -0114; the proportion of people with 1.Q.’s between 118
and 122 is therefore approximately 4 x -0114 = -0456.
Another important property of the normal distribution
which follows immediately from consideration of its moment
generating function is that the sum of two independent normal
variates is itself normally distributed. For suppose that
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X and ¥ are independently and normally distributed with
means p; and p; and variances o? and o2 respectively, then the
m.g.f, of their sum, X417, is the product of their m.g.f.’s
which is easily found to be the m.g.f. of a normal variate with
mean p;+-pp and variance o202, It follows that any linear

function of: any number of independent normal variates is
normally distributed.

Tasre 17

Frequency distribution of height among 3000 criminals
(Macdonell, 1901)

Expected frequency

Height (inches) Observed frequency  (normal distribution)

55 0
56 1 (l)
57 1 2
58 6 7
59 23 20
60 48 48
61 90 103
62 175 187
63 317 293
64 393 395
65 462 458
66 458 455
67 413 390
68 264 287
69 177 182
70 97 99
71 46 46
72 : 17 19
73 7 6
74 4 2
75 0 1
76 0 0
77 1 0

Total 3000 3001

As an example of a random variable which follows the
normal distribution with considerable accuracy Table 17
show.s the frequency distribution of the heights of 3000 criminals
obtained from the records of Scotland Yard (Macdonell, 1901)
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(Height was measured to the nearest eighth of an inch; the class
60, for example, includes all heights from 59 to 607 inches.)
The constants of the distribution are

mean 65-535 inches
standard deviation 2-557 inches
skewness -064
kurtosis 3-170.

The skewness and kurtosis are in good agreement with the
values of the normal distribution. The Expected frequencies
have been obtained by calculating the probabilities of obtaining
a normal variate with the same mean and variance in each
of the classes, and then multiplying these probabilities by
3000. There is clearly good agreement between the Observed
and Expected frequencies. The histogram of the distribution
is shown in Fig. 22 together with the normal density function
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Fic. 22. Histogram of the data in Table 17 together with
the corresponding normal curve

with the same mean and variance. The normal distribution
of height can be explained by supposing that a man’s height
is determined by a large number of small, independent,
additive factors, both genetic and env1ronmental We must
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now consider the central limit theorem which shows why
such a variable should follow the normal distribution.

Tue CeNTRAL LMt THEOREM

The great importance of the normal distribution rests on
the central limit theorem which states that the sum of a large
number of independent random variables will be approxi-
mately normally distributed almost regardless of their indi-
vidual distributions. Let us therefore consider the distribution
of the sum of # independent random variables, ¥ = X1+ X,
+...4Xu. We shall write p;, 67, 3, and so on for the mean,
variance and higher moments of X; and u and o2 for the mean
and variance of ¥, which are of course the sums of the corre-
sponding values of the Xjs. If we write M;(t) for the
moment generating function of X;—pg, then the m.g.f. of
Y—p = Z(X;—p4) is the product of the M;(f)’s and so the
m.g.f. of the standardised variate (¥ —pu)/o is

— 1_]1 M(t)o).

2 2 3
Miftfo) =14 & (t> + %(l) t..

When 7 is large 62 will also be large, since it is the sum of the
variances of the X;’s; hence o3, o4 and so on will be large
compared with ¢2 and terms containing their reciprocals
can be ignored. Furthermore, it is shown in books on calculus
that log (14-4) ¥ is very nearly equal to 4 when the latter
is small. Hence, if we take the logarithm of M*(¢), we find

that
n %tZ
; ( o2 )

Now

log M*(t) = z log Mi(t/o) =

= 12,

Thus AM*(t) is nearly equal to ', which is the m.g.f. of

1 Unless otherwise stated, logarithms are understood to be natural
logarithms to the base e.
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a standard normal variate. It follows that ¥ is nearly normally
distributed with mean p and variance o2. -

The assumption that all the random variables possess
moment generating functions may not be true. A similar
proof can be constructed with characteristic functions
which always exist. It can be shown in this way that the sum
of a large number of independent random variables will tend
~ to the normal form provided that the variances of all the distri-
butions are finite and provided that, essentially, these variances
are of the same order of magnitude. A distribution must be
of a very extreme type for its variance to be infinite, although
such distributions exist; the Cauchy distribution, which has
been considered briefly in Problem 3.4 and which will be
met later in the guise of a ¢ distribution with one degree of
freedom, is the standard example of a distribution with an
infinite variance. It can be shown that the sum of any number
of Cauchy variates itself follows the Cauchy distribution,
so that this forms an exception to the central limit theorem.
Such extreme distributions are, however, very rare and it can
be assumed that the central limit theorem will hold under all
normal conditions.

The central limit theorem has a wide variety of applications.
Firstly, it explains why many distributions in nature are approxi-
mately normal; for many random variables can be regarded
as the sum of a large number of small independent contri-
butions. For example, it is not unreasonable to suppose that
human height is determined by a large number of factors,
both genetic and environmental, which are additive in their
effects. It must not, however, be thought that all, or even
the majority, of naturally occurring distributions are normal,
although in many cases this provides as good an approximation
as any.

It should be noted that the central limit theorem does not
apply unless the factors are independent and additive; the
requirement of additivity is particularly important. If the
factors are multiplicative, for example, so that the effect
produced at any stage is proportional to the size already
attained, then the logarithms of the effects will be additive
and we should expect the logarithm of the end product to be
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normally distributed. A variable whose logarithm is normally
d{str}buted is said to follow the log-normal distribution ; the
distribution is skew to the right. For example Sinnott (1937)
h:als shown that the weight of vegetable marrows is log-normally
distributed and he interprets this to mean that the genes

cont.rf)lling weight act in a multiplicative rather than an
additive manner. (See Fig. 23.)

[] r'r--r--

@) (b)

Fic, 23, .(a) St'egregating population of 244 vegetable marrows
plotted in arithmetically equal classes; skewness --487

(b) The same population plotted in equal logarithmic classes;
skewness —-057

. Another important application of the central limit theorem
15 to the binomial distribution. We have already mentioned
that the normal distribution was discovered in 1733 by the
Huguenot refugee Abraham de Moivre as an approximation
to the binomial distribution. De Moivre’s proof was rather
lengthy and will not be reproduced here. We need merely
note that it is a special case of the central limit theorem since
the number of successes in 2 trials can be regarded as the sum
of » independent random variables, X;, which take the values
1 or 0 according as the ith trial results in a success or a
failure,

In approximating the binomial probability function by
the normal density function with the same mean and variance
we are of course approximating a discrete by a continuous
function. What we are in fact asserting is that the probability
that there will be x successes in 7 trials is approximately
equal to the corresponding normal density function at x which

in its turn is nearly equal to the normal integral between x —}
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and x4-3. For example we find from Table 12 on p. 89 that the
binomial probability of observing 3 boys in a family of size 8
is 56P3Q 5 = 2056, if we assume that P = -5147. The
value of the normal density function with mean nP = 4-1176

and standard deviation VaPQ = 1-4136 is

1 3—4-1176\ _ 2065.
1-4136 1-4136

The accuracy of the approximation depends largely on the
size of the variance, nPQ ; for when the variance is large
only a small probability is concentrated at each mass point
and it becomes reasonable to approximate a discrete by a
continuous function. The approximation has been found to
be quite good when #PQ is as low as 2, although one should
be cautious unless it is considerably larger than this, particu-
larly when P is not nearly equal to Q and the binomial distri-
bution is in consequence skew. The approximation holds
better in the central portion than in the ends of the distri-
bution. As an example Table 18 shows that the approxi-
mation is quite good when n = 10, P = -2 and nPQ is only 1-6.

TasLe 18
Normal approximation to the binomial distribution for
n=10,P = -2
Number of successes 0 1 2 3 4 5 6

Binomial probability .107 -268 -302 -201 -088 -026 -006

Normal approximation .090 -231 -315 231 -090 -019 -002

The chief use of this approximation is in evaluating the
¢ tails > of the binomial distribution. For example, if one wanted
to know how often to expect 27 or more boys in 45 births
assuming that the probability of a male birth is 514, one
could work out the answer exactly by summing all the binomial
terms from 27 to 45; this would obviously be very tedious.
But if we approximate these terms by the normal density
function with mean 23-13 and standard deviation 3-353,

7. THE NORMAL DISTRIBUTION IIg

then the required it )
) probability is approximatel i
of this normal distribution from 26} tg infinity w}}/ﬁz}}lleismtcgral

1 —qs(w
3-353

'tl;?{znc;)rrect 6Iirobab11ity is -1579. The integral has been
faken rom 2 b ra,t}.Ler t.hax} from 27 upwards to allow for the
: ct that th.e b}nomlal distribution is discrete. This correction
or continuity is often negligible and may be ignored

The Poisson distribution can also be approximat;:d by the
;lr?;rﬁal $ﬁtr1k{ut1on when p, the counterpart of nPQ | is n(zft too
s than 300 radhonciive dimiopratioms s toen e i

T lve disintegrations in an hour when th

true rate of disintegration is 400 per hour, we hat the
number of disintegrations in an h AP Wy t}'le
a Poisson v.ari.ate with mean 400 z(t)rlfcll‘ i:, t;)l?lsozlll ; t"lgfi(;rtlhimls’
normally dlstr}buted with mean 400 and standfr%. devi at'e .
20. The required probability is thus nearly e

35954
@(-3—*—-—0—0) — 021,

) = +1574.

20

us:(\i’et have 1se'en so far how the central limit theorem can be
normacl) fiix‘pta.l;l t.hc frequent occurrence of normal, or nearly
, distributions in nature, and to justi

istribut, Jjustify the use of the

Zggmalgl()i(si:(s);nb;tiopg as an approximation to the binomial
istributions.  The  third licati i
o son . application of this
Ofeosce;l .l1es in the tl}cory of §ampl1ng distributions which are
> g tmportance in statistical inference and which usually
: lfcomf1 apl.)roanat.ely 'normal in large samples even though
the u? erlying distribution may be far from normal, We must
di:tlsbolff' now i{plam the important concept of a sampling
tibution with particular reference i istri

bapaoion with p to the sampling distri-

S v 2 n
uppose that we have made n obse atiOl’lS, X1, X X
3 9ty >

f)fn some random variable and have computed their mean #;
it we make another set of n observations, #;, x,, and
! . s : N R
t;r;lp;lt: 1,’/zezrt m(;)an, g » we should not, in gcnera’l, e)’cpc:lc’t the
ans to be identical. If we re i
. eat this proced

) d . P cedure

large number of times we will obtain a large nll)lmber of
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means, %, ¥, £”, and so on which, if we go on long enough, will
generate a frequency distribution and eventually a probability
distribution. This probability distribution is- called the
sampling distribution of the mean.

The observed sample of 7 observations can thus be regarded
as one sample drawn at random from the totality of all possible
samples. Each of the observations can be thought of in the
same way as being drawn at random from the underlying
probability distribution and can thus be regarded, if we
‘imagine the sampling procedure to be indefinitely repeated,
as independent random variables with this distribution. If
the mean and variance of this underlying distribution are
and o2 respectively and if # is the mean of the observations,
we can therefore write

E(n'f) = E(x1+x2+---+xn) = E(x1)+E(x2) .. —I—E(xn) = I
V(nf) = V(x1+x2+..,+x,,) = V(x1)+V(x2)++V(xﬂ) — nog2

so that
E(%) = E(n&/n) = E(nX)/n = p
V(z) = V(ni[n) = V(n&)[n2 = o2/n.

That is to say, in repeated samples of n observations, the
sampling distribution of & will have mean p and variance
o2[n; it is in accordance with common sense that the sampling
distribution of ¥ should become more closely clustered about u
as n increases. Furthermore, it follows from the central limit
theorem that this sampling distribution tends to the normal
form as n increases almost regardless of the form of the under-
lying distribution. If this distribution is itself normal, then
so of course is that of #. In making inferences based on the
sample mean it can therefore usually be assumed that # is a
single observation drawn at random from a normal distribution
with mean p and variance o2/n; the assumption of normality
will break down only if # is very small or if the underlying
distribution is highly abnormal. (It should be observed that
the convention of using capital letters for random variables
has been abandoned in this paragraph in order to avoid lengthy
periphrasis; this practice is usual in the discussion of sampling
distributions and should cause no confusion.)
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APPENDIX

The area under the normal curve

We wish to prove that

w0
f e 3E-whaly . oA/
—x

If we make the substitution Y=

: e this i .
(0 showing (x—p)/o this is equivalent

Asr Vdy = /9
The square of this integral is

42 — f_ e 157y f T ey f ” f s,

This doublcz integral is the volume under the bell-shaped
surface. e™3@ 40, Now x2+452is the square of the distance of
the point (x, ») from the origin, which we may denote by r2.
Furthermore, the area of a thin annulus or ring at a distance
r from the- origin and of width dr is 2zrdr and so the volume
of _the cyhrzxdrical shell with this annulus as base and with
¥1e1ght2 e™#"”, so that it just touches the bell-shaped surface
is ¢4 27rdr. Hence the total volume under the surface is ’

A =2m J " reirdr = 2”[ —e"‘"’]w = 2.
0 0

fI'his result can also be proved by transforming the double

integral fron} rectangular into polar coordinates if the reader
is familiar with this method.
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Exercises

7.1. Theintelligence quotient (1.Q.) is approximately normally distributed
with 2 mean of 100 and a standard deviation of 16. What is the probability
that an individual will have an 1.Q. (a) less than 90, (b) greater than 130,
(¢) between 95 and 1057

7.2. {(a) What is the probability that the mean 1.Q. of a randomly chosen
group of 12 people will lie between 95 and 1057 () How large a sample
is required to have a chance of 95 per cent that the mean 1.Q. of the group

will lie between these limits?

Fit a normal curve to the histogram of the distribution of head
breadths calculated in Exercise 3.3 by using a table of the normal density
function. (See Exercises 4.6 and 4.12 for the mean and standard deviation
of the distribution; use Sheppard’s correction for the variance since the

grouping is rather coarsc.)

7.3.

7.4. Find the Expected frequencies in the distribution of head breadths
in Table 10 on p. 40 on the assumption of normality by using a table of
the normal integral.

7.5. From the data in Table 17 on p. 113 estimate the proportion of men
with heights (a) more than 1 standard deviation, () more than 2 standard
deviations above the mean, and compare the results with the theoretical

probabilities on the assumption of normality.

7.6. The reaction times of two motorists 4 and B are such that their
braking distances from 30 m.p.h. are independently normally distributed.
A has mean 30 yds and variance 36 yds?z and B has mean 40 yds and
variance 64 yds?. If they both approach each other at 30 m.p.h.on a
single track road and first see cach other when they are 90 yds apart,
what is the probability that they avoid a collision? [P. P. P., Hilary, 1963}

7.7. Given the data of Exercise 2.6 how many fume cupboards would be

required to satisfy a group of 50 chemists at least 95 per cent of the time?

[Certificate, 1959]

7.8. 1If the probability of a male birth is -514 what i§ the probability that
there will be fewer boys than girls in 1000 births? How large a sample
must be taken to make the probability of this occurrence less than 5 per

cent?
7.9. A chemist estimates that the average demand for tubes of a particular

type of toothpaste is 150 per week. Assuming that the weekly demand
follows a Poisson distribution, determine the least number of tubes he
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should have in stock at the be

the stock bein
g exhaust
[Certificate, 1958] usted befor
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gxﬁning of the week if the probability of
€ the end of the week is not to exceed 0-05

I N
zto. | rlll estimating the concentration of cell
ma y cells must be counted to have a

stimate within 10 per cent of the true

o S 11 a suspension about how
per cent chance of obtaining an

value?
P roblems
7-1. Verify that the
product of the m.g.f.
m.gf of a normal variate with the.g;f. s of two normal variates is the

Prove by a di § ppropriate m :

sum of ytwo llifgz alg(;-lmcnt not involving the use of fﬁ: ringd f. Vt?:lztmchc.
en . h gf. t

Problem 3.5). pendent normal variates is normally distributez (CF

7.2. Show that th iati
€ mean deviation of a normal variate 5o \/ 2_ 798¢

7-3. If Xl) X2 . ¢ . "

distributi s «+-y 4, are independent random : .

b euc t1ioni show that the skewness and kurtosis Og’:l;l?bles with the same
pectively as n becomes large (cf. Problem 5 1) eir sum tend to 0 and

7-4- If X follows the binomial d
of ‘(X —p)/o tends to e4t?
Poisson distribution tends t

7-5. If X and 7 are ind
(see Problem 3.4). show t}tipendcnt Cauchy variates with scale parameter b

tX+Yisa C i i

5 e paem ‘ at A-I'1s a Cauchy variate with

this(distri bout'em '3.5, use pz}rtxal fractions to integrate.) S;ali? lows that
101 13 an exception to the central limit theo. t folows that
. rem.

7-6. The variates X and 7 are n

of each other. X has mean 10

mial bxstrlbution prove directly that the m.g.f.
il ecomes large. Prove similarly that the
ormality as x becomes large.

ormallx distributed and are independent
and unit variance, while ¥ has mean 2
ct that ¥/X < 7 is almost equivalent to
the standard normal integral could be
rlx to the probability distribution of ¥ /X
uld be found for the error in this approxi:

and variance 4. By using the
Y—rX < 0, show how tailes 01;3
usec.l to find a close approximatio
Indl'catc how an upper bound co
mation. [Certificate, 1960]




CHAPTER 8

THE x2,t AND F DISTRIBUTIONS

In this chapter we shall consider‘th.rce .distributio.ns. which
are closely related to the normal distribution. Their import-
ance lies largely in their use as sampling d.1st.r1but.10ns and will
become apparent when methods qf §taust1ca,1 inference are
discussed in succeeding chapters; 1t 1s, however, .cor}ven.lent
to describe the mathematical properties of these d13tr11_)ut101}s
now. Detailed study of the mathenr}atical proofs contained in
this chapter may be postponed until a second or subsequent

reading.
Tue x2 DisTRIBUTION
The 52 distribution with f degrees of freedom is the distri-

bution of the sum of the squares of f independent standard
normal variates, that is to say of

¥ — 23435+

where each of the 2’s is independently and norma}l_l'y distributed
with zero mean and unit variance. This definition generates
a family of distributions depending. on the number of degrees
of freedom, f. It is often convement to reft:r to a random
variable which follows the x2 distribution with f degrees of

freedom as a x%; variate. o
Consider first the mean, variance and skewness of the distri-

bution. The moments about the origin of a x}, variate, that is
to say of ¥ = J?, are

p o= E(1) —EZ) =1

wy = E(1?) = E(R%) =3

wy = E(¥3) = E(Z6) = 15.

It follows from the rules for converting moments about the
origin to moments about the mean that up =2 and that

124
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ps = 8. Now a y2 variate with f degrees of freedom is the sum
of f independent x}, variates. It follows from the additive
property of the mean and the variance that the x2 distribution
with f degrees of freedom has mean f and variance 2f. It is
quite easy to show that this additive property holds also for
the third moment, so that u3 = 8f; the skewness of the dis-
tribution is thus V'8/f. Thus both the mean and the variance
of the distribution increase as f increases. When fis small the
distribution is highly skew to the right, but the skewness
decreases as fincreases; when f becomes large the distribution
tends to the symmetrical normal form by the central limit
theorem.

We will now find the moment generating function, and hence

the probability density function, of the 2 distribution. The
m.g.f. of a y2; variate is

1 0
M(t) = E(@Y) = E(é?") = —— e~ 204,

=5 =B = — |
which is equal to (1—2¢)~* since apart from this factor it is
the area under the normal curve with variance (1-—2¢) %
The m.g.f. of the y2 distribution with f degrees of freedom,
that is to say of the sum of f such independent variates, is
therefore (1—2¢)#, It is easy to verify, by making the

substitution w = (1 —2¢)y, that this is the m.g.f. of the density
function
1=

A(f)

where A( f) is the integral of the numerator from 0 to co. (It
is clear from its definition that a x2 variate is essentially
positive.) It is not difficult to show (see Problem 8.2) that

A(f) = 1x3X5...(f=2) xV2r when fis odd

A(f) = 2x4%6...(f—2) x2 =28 (4 f—1)! when fis even.

Fig. 24 shows the density functions of the x2 distribution
with different numbers of degrees of freedom. When f =1

the density function is proportional to ¢™#¥/V y and therefore
increases without bound as y tends to zero; the distribution
is thus of an extreme J-shaped type. When f=2 the distribution

S) = 0< y< oo
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is the exponential distribution with A = 3. When fis greater
than 2 the density function rises from zero at the origin to
a maximum at f—2 and then decreases. The median is very
nearly two-thirds of the way between the mode and the mean,
that is to say at f—%. A table of percentage points will be
found at the end of the book.
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Fic. 24. The density function of the x2 distribution with 1, 2, 4
and 16 degrees of freedom

An important property of the distribution is that if 1}
and 1, are independent y2 variates with f; and f, degrees of
freedom then their sum, ¥;-+1,, is a 2 variate with fi-+f>
degrees of freedom. This follows immediately from the
definition of the distribution; for if 77 and 1) are respectively
the sums of the squares of fi and f;, mutually independent
standard normal variates then %47, is the sum of the

squares of fi+4-f, such variates, This result can also be
proved by considering the moment generating function of

Yi+ 7.
Many of the practical applications of the x2 distribution
derive from the following theorem. Suppose that i, <2, .- <n
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are inde.pendent, standard normal variates and that %7, ¥, 2 .-
Y are linear functions of them

Yy = a1 +a,K0+ ... 4anln
Yo = 018040280+ ..+

and so on. The theorem states that the ¥y’s will be inde-
pendent, standard normal variates if, and only if, (1) all
quantities like Y'a? are equal to 1, and (2) all quantities like
Yaibs are zero. Verbally this means that the sums of the
squares of the coefficients must be unity and the sums of their
cross-products zero. A linear transformation which satisfies
these conditions is called orthogonal. The ecssential feature
of.s1‘1(:h a transformation is that it preserves distance from the
origin so that y'¥? =3 2?2 identically; it may therefore be
wmterpreted geometrically as a rotation of the axes. For a
fuller discussion the reader is referred to a textbook on algebra
such as Ferrar (1941).

'To prove the theorem we shall for simplicity consider only
two variables,

*y

Y =aili+ a2,
Yo = 01801+6:2,

ai+ta3 = 242 =1
albl—l—azbz = 0.

where

It is easy to show that ¥} and ¥ 2 are uncorrelated, standard
norn-qal variates. They are normally distributed since they
are linear functions of independent normal variates ; they have

zero mean since Jy and £, have zero mean; they have unit
variance since, for example,

Vin) = afV(Zl)—}—agV(Zz) =ai+al =1;

and they are uncorrelated since

Cov (1, Y;) = E(lez) = E[(alel-FazZz) (5151%-11252)]
= @b E(L]) +aabr E(Z3) + b E(Z1) E(Z,)

+a0 E(ZDE
= alb1+a2b2 = 0. 420 ('Zl) (ZZ)
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To show that ¥; and ¥, are not only uncor}rt?lated b.ut
independent we first observe that the joint probability density
function of Z; and £ is

_1_. 1@+
2m

and thus depends only on the distance of the point (z1,_§2)
from the origin. If we draw the contours of equal probability

%

Fic. 25. The spherical symmetry of the norma.l dis-
tribution and its consequent invariance under rotation of

the axes

density they will therefore be circles. (They would be spheres
in three dimensions and hyperspheres in more than three
dimensions.) It follows that if we rotate the axes about the
origin the probability distribution will look the same from
the new axes as it did from the old omes (sce Fig. 25). But
rotation of the axes corresponds algebraically to an orthogonal
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transformation since the essential property of such a trans-
formation is that it preserves distances from the origin. Hence
the joint probability density function of 73 and 7, is the same
as that of ; and 3; thatis to say, ¥ and 1) are independent,
standard normal variates.

This theorem can be extended to any number of variables,
although the pictorial representation cannot be interpreted
literally in more than three dimensions. It is interesting to
observe that 2; and 7, will be uncorrelated whatever the
distribution of {; and &, may be, provided that they are
independent and have the same variance, but that the dis-
tributions of ¥7 and 7, will be independent only in the normal
case since this is the only distribution which has the property
of spherical symmetry illustrated in Fig. 25. We shall now
consider how this theorem can be applied to derive the
sampling distribution of the variance.

THE SampLING DISTRIBUTION OF THE VARIANCE

Suppose that we have made a number of observations,
X1, %2, ..., Xn, on some random variable and have calculated
their variance, my =Y (x;—=#)2/n; then, if we make n more
observations, x{, &, ..., x;, and calculate their variance, m/
we will in general expect it to differ slightly from m,; and if we
repeat this procedure a large number of times we shall obtain
a large number of different values of the variance which will
have a frequency distribution and eventually a probability
distribution. This probability distribution is the sampling
distribution of the variance; an observed variance may be
thought of as an observation taken at random from this
sampling distribution.

In considering the sampling distribution of m, we can as
before regard the individual observations as independently
and identically distributed random variables with mean p
and variance o2. We shall write $2 for the sum of the squared
deviations from the mean and we recall the identity

82 =3 (%, —%)2 = Y (xs—p)? —n(F—p)2
(This result follows from the formula for $2 given on p. 56
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and from the fact that S2 is unchanged if p is subtracted from
cach of the observations and from %.) Now the Expected value
of ¥ (xi—p)2is no? and the Expected value of n(¥ —pu)2is o2 since
E(%) = p and V(%) = o2/n. Hence

E(S?) =no?2—o02 = (n—1)a?
and

B(my) = E(Sfn) — E(S)fn =" .

It may scem surprising that the Expected value of the sample
variance is slightly less than the population variance, o2
The reason is that the sum of the squared deviations of a set of
observations from their mean, %, is always less than the sum of
the squared deviations from the population mean p. Because
of this fact S2 is often divided by n—1 instead of » in order to
obtain an unbiased estimate of o2, that is to say an estimate
whose Expected value is equal to o2 To avoid confusion
between these quantities we shall adopt the following con-

ventional notation:
my == Sz/n

52 = 82[{(n—1).

No assumptions have yet been made about the form of the
underlying distribution, but nothing more can be said about
the sampling distribution of the variance without doing so.
Suppose then that the x;’s are normally distributed and con-
sider the identity

Tla—p? S alE—p)?

2 o? a2

The left-hand side is a xZ variate and the second term on
the right-hand side is a y;?, variate. Itis tempting to conjecture
that §2/0? is a x2 variate with n—1 degrees of freedom. This
must be so if the two terms on the right-hand side are inde-
pendently distributed; for if it had any other distribution the
products of the m.g.f’s of the two variables on the right-hand
side would not be equal to the m.g.f. of the variable on the
left-hand side. This argument would, however, break down
if the sample mean and variance were not independently
distributed.
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To establish this independence we write

Zz:x‘;" i=1, .. %
n=!ziloar vz
\/n \/n 27t ... \/n ne

It can easily be verified that

$R7 = 2y

If we complete the transformation by defining linear functions
¥y, ¥;, ..., ¥y, in any way which satisfies the conditions of
orthogonality, then the theorem of the last section shows
tha't these linear functions of the Zy¢’s will be standard normal
variates distributed independently both of each other and of
Y1 Furthermore, since an orthogonal transformation pre-
serves distances it follows that |

Sa=in-fnm
so that =t =2
S2
) = YI4+024 ... 412

It follows that $2/¢2 follows the y2 distribution with n—1
degrees of freedom and that its distribution is independent
of that of %.

This result was first obtained by Helmert in 1876 but was
overlooked for some time. In his 1908 paper on ‘The prob-
able error of a mean’ ‘Student’ conjectured that it was true,
but was unable to prove it; the proof was supplied by Fisher
by a geometrical method similar to the one used above which
was described by ‘Student’ as “delving into the depths of
hyperspace .  Since he was unable to prove this result
mathematically ‘Student’ tried to verify it empirically by writing
down the heights of the 3000 criminals shown in Table 17
(p. 113) in random order and taking each consecutive set of 4
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as a sample. The histogram of the 750 values of $2/c? obtained
in this way is shown in Fig. 26 together with the theoretical ¥
distribution with three degrees of freedom. The agreement is
reasonably satisfactory although it is not quite as good as one
might expect; Student’ attributed this to the rather coarse
grouping of heights which he used.

O

Relative frequency per unit (probability density)

Sf’[o‘" :

Fic. 26. Histogram of 750 values of §2/02, each based on 4 observations
together with the theoretical 42 distribution with 3 degrees of freedom
(after “ Student,” 1908)

THE ¢ DIsTRIBUTION

Suppose that { is a standard normal variate and that ¥
independently follows a y2 distribution with f degrees of
freedom. The random variable

is said to follow the ¢ distribution with f degrees of freedom.
This distribution was first considered by ‘Student’ in his 1908
paper in which he discussed how one should allow for the
error introduced by the fact that the standard deviation of
the mean, o/4/n, is not known exactly but is estimated by
the variable quantity, s/4/n. In repeated samples of size n
from a normal population with mean p and variance o2 the
sample mean & will be normally distributed with mean p and
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variance o2/n and $2/¢2 will independently follow a x2? distri-
bution with n—1 degrees of freedom. Hence

F—p) $2_ (F—p)

a/+\/n (n—V)o2  s/4/n

will follow the ¢ distribution with n—1 degrees of freedom.
If we use the estimated standard deviation, s, instead of the
true unknown value, o, in making inferences about u we must
therefore employ the ¢ distribution instead of the normal
distribution. This distribution is therefore of great importance
in statistical inference as will become clear in the next chapter.
It can be shown (see Problem 8.6) that the density function

of Tis
2\ -+
f(t) = constXx (1+—>
S
where the constant is _A(_f_'tl_L .
A(f)V2nf

The density function of the ¢ distribution is shown in Fig. 27
for different values of /. When fis large it tends to the standard
normal distribution since the Expected value of 1/fis 1 and
its variance is 2/f which tends to zero as fincreases; hence the
denominator of T will cluster more and more closely about 1
as f becomes large. When f is small the distribution is far

4

f(t)

N) I

=

Probability density

o

-4 -3 -2 -1 0 1 2 3 4
t

Fic. 27. The density function of the ¢ distribution for different
numbers of degrees of freedom
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from normal; it is always symmetrical about zero but the
variance increases as f becomes smaller owing to the increasing
variability of the denominator and the shape of the distribution
becomes leptokurtic. Indeed, when fis 4 the fourth moment
becomes infinite, and when fis 1 or 2 the distribution is of
such an extreme leptokurtic type that the variance is infinite.
In practice, of course, one will never use the ¢ distribution
with so small a number of degrees of freedom since no one
would hope to draw conclusions from 2 or 3 observations.
The ¢ distribution with 1 degree of freedom whose density
function is 1

S m(1-12)

is also known as the Cauchy distribution. It is useful in con-
structing counter-examples to theorems such as the central
limit theorem. The percentage points of the ¢ distribution
are tabulated at the end of the book. It will be seen that
the normal distribution can be used instead without serious
error when f'is greater than 20. '

We have already discussed ‘Student’s’ empirical verification
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Fic. 28. Histogram of 750 values of ¢ = —, each based on 4

s/v/n
observations together with the theoretical ¢ distribution with 3
degrees of freedom (after ‘ Student?, 1908)
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of' the x2 distribution as the sampling distribution of §2/o2.
His corresponding results for the ¢ distribution with 3 degrees
of freedom as the sampling distribution of

p o T

s/Vn
for ?50 values of ¢ each based on four observations are shown
in Fig. 28. The agreement with the theoretical curve is good.

Tue F DiIiSTRIBUTION

Suppose that 7] and 7, are independent y2 variates with
fi and f, degrees of freedom respectively. The random

varlable
v _ Nl :
Yalf-

is said to follow the F distribution with f; and f, degrees of
freedom. This distribution was so named in honour of Fisher
who first studied it in a rather different form in 1924. It
is the sampling distribution of the ratio of two independent,
unbiased estimates of the variance of a mormal distribution
and has widespread application in the analysis of variance.

It can be shown (see Problem 8.7) that the density function
of Vis

vi fi—1

g(v) = const X (oo i

0=v<0

where the constant is

Yl A(ﬁ +f2)F
S Ay

The mean of the distribution is approximately 1 provided that
f2 is not too small, since it is the distribution of the ratio of
two random variables each of which has unit mean. The mecan
is not exactly 1, since the Expected value of 1/ is only approxi-
mately 1/f;. The variance of the distribution decreases as
/i1 and f; increase since the variance of 1;/f; decreases with f;
and the variance of ¥,/f, with f,. The percentage points are
tabulated at the end of the book.
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It is interesting to consider the relationship between the
x2, t and F distributions. If 7 is a ¢ variate with f degrees of
freedom then 772 is an F variate with 1 and f degrees of free-
dom since the square of a standard normal variate is by
definition a x%; variate. Similarly, if 1" is a x2 variate with f
degrees of freedom then ¥/fis an F variate with fand co degrees
of freedom since as f tends to infinity 1>/f, becomes virtually
constant. The F distribution thus constitutes a wide class of
distributions, depending on the parameters f; and f3, which
covers the y2 and ¢ distributions as special cases, the former
with f, = o0 and the latter with f; = 1.

Exercises

8.x. The intelligence quotient is approximately normally distributed
with p == 100 and ¢ ==16. In a randomly selected group of 10 people
what is the probability that the observed standard deviation, s, will be less
than 8-8? (P. P. P., Trinity, 1965)

8.2. If four observations are taken from a normal distribution what is
the probability that the difference between the observed mean x and the
true mean yu will be less than five times the observed standard deviation,
§?

8.3. Suppose that the true standard deviation of technician 4 in performing
some chemical determination is half that of technician B. If they each
do 7 determinations on the same solution what is the chance that B will
appear to be more accurate than 4 as judged by their observed standard
deviations? (Assume that the errors are normally distributed.)

Problems

8.1. If £ is a standard normal variate find the distribution of ¥'= Z2 by
a direct method (cf. Problem 3.3).

8.2. If A(f) is defined as on p. 125 show, by partial integration or other-
wise, that A(f—2) = (f—2)A(f) for f > 2 and hence derive the formula
for A(f) given on the same page. [Readers familiar with the Gamma
function, should note that

A(f)=28T(4f).]
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8.3. If 7, and ¥, are independent y variates with f; and f; degrees of
freedom prove directly that ¥,--1; is a x? variate with f,-f; degrees of
freedom (cf. Problem 3.5). Derive this result in a different way by using
moment generating functions.

8.4. Investigate algebraically the sampling variance of $% = Z(x;—)?
and show that it is 2(n— 1)o4 when the underlying distribution is normal.

8.5. Investigate algebraically the covariance of §% and & and show that it
1s zero when the underlying distribution is symmetrical.

8.6. Suppose that £ is a standard normal variate and that ¥ independently
follows a x? distribution with f degrees of freedom. Find the distribution

of V= VT/f (cf. Problem 3.1) and hence find the density function of

T = Z|V (cf. Problem 3.6), which is by definition the ¢ distribution with
S degrees of freedom.

8.7. Suppose that ¥; and ¥, are independent y? variates with f; and f,
degrees of freedom respectively. Find the distribution of

Yl fi
V—
TZ/fZ

in the same way. This is by definition the F distribution with f, and f,
degrees of freedom.

8.8. A continuous random variable taking values between 0 and 1 is said
to follow the Beta distribution with parameters p and ¢ if its density
function is

xw—l(] ——x) a-1

SO =350

A

i

0=Cx <l

where B(p, ¢), the integral of the numerator between 0 and 1, is the complete
Beta function. Show that, if ¥; and ¥, are independent y?* variates with
f1 and f, degrees of freedom respectively, 27/(¥,-+}7Y;) follows the Beta
distribution with p ==}{,, ¢=1%f,. Hence show that

__4A@Zp)A2q) [ (p-1g-1)!

— A@2pT2g) = (brqg—1)1 if p and q are integers.]

B(p, q)

[Readers already familiar with the Beta and Gamma functions will recognise
the identity

B0y, ) — DO

Yo+49)

of which this is an alternative proof.]
Find the mean and variance of the Beta distribution.
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8.9. Supposc that in a certain population the number of accidents occurring
to an individual in a fixed time follows a Poisson distribution with mean
w, but that au, where a is some constant, varies from person to person
according to a x2 distribution with f degrees of freedom, where f is not
necessarily aninteger. Show that the distribution of the number of accidents
in the whole population has the probability function

x4 —1 a \¥ [ 2 \=

[Note that the binomial coefficient, (”), is defined as
X

ny __ n(n—1) ... (a—x-41)

x x!

when n is not an intcger; this expression is well-defined for any value of

n, positive or negative, integral or fractional, provided that x is an integer.]
If we redefine its parameters this distribution can be re-written as

R A (“Z) P (- Q).

which is the appropriate term in the binomial expansion of P*(1—Q)-".
The distribution is for this reason called the negative binomial distribution.
Find its probability generating function and hence find its mean and
variance. Fit this distribution to the data of Table 15 on p. 96 by equating
the observed with 1he theoretical mean and variance.

This distribution has many other applications.

CHAPTER 9

TESTS OF SIGNIFICANCE

Probability theory, with which we have been concerned so far,
investigates questions like: Given that a coin is unbiased,
what is the probability of obtaining 17 heads in 40 throws?
We are now going to reverse our viewpoint and try to find
answers to questions like: Given that 17 heads have occurred
in 40 throws of a coin, what evidence does this provide about
whether the coin is unbiased or not? Such questions are often
answered by the construction of a test of significance. In this
chapter we shall describe some significance tests which are in
common use; the logic underlying these tests and other methods
of statistical inference will be discussed in more detail in the
next chapter. We shall begin by defining the nature of a
significance test, using tests based on the binomial distribution
as illustrations of the procedure.

SieniFicaNceE TEsts BaseD oN THE BiNoMiaL
DistriBUTION

Suppose that a penny has been thrown one hundred times to
determine whether or not it is biased. If 48 heads and 52
tails occurred it would clearly be quite consistent with the
hypothesis that the true probability of heads is 4. For al-
though on this hypothesis the most likely result is 50 heads
and 50 tails, in a large number of repetitions of a hundred
throws we should expect small deviations from this ideal ratio
to occur quite frequently; indeed we should be rather surprised
if exactly 50 heads occurred since the probability of this
event is only -08. If, on the other hand, we observed 5 heads
and 95 tails we should be led to conclude that the coin was
probably biased; for although such a result could occur if
the coin were unbiased, nevertheless one would expect to
observe a deviation as large as this only very rarely and it

139
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seems more reasonable to explain it by supposing that the true
probability of heads is less than a half.

It thus seems natural to suppose that the possible results
of our experiment can be divided into two classes: (1) those
which appear consistent with the hypothesis that the coin is
unbiased because they show only a small deviation from the
50/50 ratio, and (2) those which lead us to reject this hypothesis
in favour of some alternative hypothesis because they show a
rather large deviation from this theoretical ratio. The question
is: Where should we draw the line between these two classes,
that is to say between a ‘ small > and a  large > deviation?

The answer adopted in the modern theory of significance
tests is that the line should be drawn in such a way that the
probability of obtaining a result in the second class (the rejec-
tion class) if the coin is unbiased is equal to some small, pre-
assigned value known as the level of significance. The level
of significance is usually denoted by « and is often taken as
5 per cent or 1 per cent. Now we know that the number of
heads in a hundred throws with an unbiased coin follows the
binomial distribution with P = }, which can be approximated
by a normal distribution with mean nP = 50 and standard
deviation VnPQ =5; hence the probability that it will
deviate from 50 by more than 1-:96 x5 = 10 in either direction
1s approximately 5 per cent. If we wish to work at the 5 per
cent level of significance we must therefore put all results
between 40 and 60 in the first class (the acceptance class)
and all other results in the second class (the rejection class).
This means that if we observed fewer than 40 or more than
60 heads in our experiment we should reject the hypothesis
that the coin is unbiased; otherwise we should ‘ accept’ the
hypothesis that it is unbiased, that is to say we should conclude
that there was no reason to suppose it biased. If we wish to
work at the more stringent 1 per cent level we must arrange
that the probability of an observation falling in the rejection
class 1s only 1 per cent if the coin is unbiased; to do this we
must take 2-57 x5 = 13 as the critical deviation, which means
that we reject the hypothesis of no bias if the number of heads
is less than 37 or more than 63.

The general significance test procedure can be stated as
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follows. We are about to do an experiment to test some
statistical hypothesis, which we call the null hypothesis; in
the above example the null hypothesis was that the coin was
unbiased and that the number of heads would consequently
follow a binomial distribution with P == }. We next consider
all possible results of the experiment and divide them into
two classes: (1) the acceptance class, and (2) the rejection
class, in such a way that the probability of obtaining a result
in"the rejection class when the null hypothesis is true is equal
to some small, pre-assigned value, «, called the significance
level. We now do the experiment. If the observed result
lies in the acceptance class we ‘accept’ the null hypothesis
as a satisfactory explanation of what has occurred; if it lies
in the rejection class we ‘reject’ the null hypothesis as un-
satisfactory.

The justification of this procedure is that if we are to reject
the null hypothesis with any confidence we must know that
the observed result belongs to a class of results which would
only occur rather infrequently if the null hypothesis were true.
For example, if we found that someone was using a criterion
which rejected the null hypothesis on 50 per cent of the
occasions when it was in fact true, we should clearly have little
confidence in what he said. The smaller we make the signi-
ficance level, «, the more confidence we shall have that the
null hypothesis is really false on the occasions when we reject
it; the price we pay for this increased assurance is that the
smaller we make «, the more difficult it becomes to disprove
a hypothesis which is false.

Nothing has been said so far about how a rejection region
is to be chosen from among the large number of possible
rejection regions, that is to say about how the possible results
of the experiment are to be placed in decreasing order of agree-
ment with the null hypothesis. It is very often intuitively
obvious how this should be done; but attempts to find general
mathematical criteria for defining  best’ rejection regions
have not been very successful, except in the simplest cases.
One general criterion, however, can be laid down, that the
significance test should be as powerful as possible, that is to
say that it should have as high a probability as possible of
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rejecting the null hypothesis wh-en :1t is.false, Sl,l.bJ-liCt of co%lﬁf;
to the fixed probability, a, of rejecting 1t when it 1s t?u}tlt. o
difficulty is that the power of a test depends on wl}lcl o the
alternative hypotheses in fact holds, and a particular eof
may be more powerful than a second test over one rang[?hus
alternative hypotheses and less powerful over another. b
in the coin-tossing example, instead of rejecting the hyp}(l) 6210
that P = } whenever there are more than 60 or less than
heads, we could decide to reject it whenever tht?re are more
than 50--1-64x5 = 58 heads and to accept it otherwise.
This is called a one-tailed test. Both tests have thf: sahme
probability of 5 per cent of rejecting the null hypothesis when
it is true, but the one-tailed test is more powerful than the t¥1v0-
tailed test when P is greater than -lgianczlless powerful ;{v en
P is less than 4. This is illustrated in Fig. 29. Ii; we nilw
beforchand that P is either equal to or greater than §, then the
one-tailed test is preferable; but if we have no Sljl()‘h) i)rlort
knowledge then most people would choose the two-%m%t tes
since they would want to be ablle to detect deviations 1n

ither direction from the null hypothesis.

elt;{g delxample, if 100 subjects who suffered from heac,lack}e?
were given two drugs and asked to report after a month’s tria

I

-
<

p=

One-tailed test

4 Two-tailed test

Probability of rejecting the hypothesis that

Fic. 29. The power of the one-tailed and th‘e two-t'ailed
tests for P =— 4 based on 100 observations with a
significance level of -05

' v
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which gave them more relief, then if the first drug was aspirin
and the second a placebo we should know that the aspirin
was at least as good as the placebo and we would not believe
the result if the placebo appeared to be better; but if the two
drugs were two different forms of aspirin we would in general
have no prior knowledge about their respective merits and
would choose the two-tailed test. In choosing a rejection
region we must therefore consider the range of alternative
hypotheses which may be true if the null hypothesis is false;
a result will be classed as © unfavourable ’ to the null hypothesis
only in so far as it can be explained better by some alternative
hypothesis. A one-sided range of alternative hypotheses
gives rise naturally to a one-tailed significance test and a two-
sided range of alternative hypotheses to a two-tailed test.
It should be stressed, however, that the exact test to be used
must be decided defore the experiment has been done. If, in
the coin-tossing example, we were to look at the result of the
experiment first and decide to do a one-tailed test for P>
whenever there were more than 50 heads and a one-tailed
test for P<<4 whenever there were less than 50 heads, the
probability of rejecting the null hypothesis when P = } would
be not 5 per cent but 10 per cent; this would clearly be
cheating.

It 1s often convenient to construct a significance test by first
ordering the possible results of the experiment according to
their degree of ¢ agreement > with the null hypothesis and then
calculating the probability of obtaining a result as © bad’
as or ‘worse’ than the observed result; if this probability
is smaller than the pre-assigned significance level, a, we reject
the null hypothesis; otherwise we accept it. For example,
if 38 heads have been observed in 100 throws of a coin, we
calculate the probability of obtaining less than 38 or more
than 62 heads if the coin is unbiased; application of the usual
normal approximation shows that this probability is about
-0164. This probability is less than -05 but greater than -01
and we can therefore reject the hypothesis that the coin is
unbiased if we are working at the 5 per cent level but not if
we are working at the more stringent 1 per cent level. This
procedure is equivalent to the original method of constructing
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a significance test and it has the advantage of determining
the exact level of significance at which the null hypothesis
can be rejected.

We have considered how to test the null hypothesis that the
probability of success is 4. Other values of P can be tested
in the same way. Thus we find from Table 5 on p. 22 that
in one of his experiments Mendel observed 5474 round
seeds among 7324 seeds. On the null hypothesis that P = £,
derived from his theory of inheritance, the number of round
secds can be regarded as a single observation from a binomial
distribution with this probability, that is to say from a very
ncarly normal distribution with mean nP = 5493 and standard
deviation V2PQ == 37. To test this hypothesis we therefore
calculate the standardised quantity

54745493
37

d —-51

and then find from tables of the standard normal distribution
that the probability of obtaining a value as large as, or larger
than, this n absolute value (i.e. less than —-51 or greater
than +-51) is 617. There is therefore no reason to reject
the hypothesis that P = 4. A two-tailed test is appropriate
since, if P is not 2, there is no prior reason to suppose that it
will be smaller, or greater, than this value. -
Instead of considering the deviation of the observed from
the Expected number of successes we might equally well
consider the deviation of the proportion of successes, p, from
the theoretical probability, P; if P is the true value of the
probability then p—P will be approximately normally dis-
tributed with zero mean and variance PQ /n. The resulting
significance test would be identical. This procedure can be
extended to test the difference between two proportions.
Suppose that two samples, of size », and n, respectively,
have been taken and that the numbers of successes in these
two samples are x; and x, with corresponding proportions
p1and pp. If we want to test whether the probability of success
is the same for the two samples we can argue that, if this is
true and if this common probability is P, then p) —p, should be
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approximately normally distributed with zero mean and
1

- Iy .
variance PQ ('_1—1 + 7}2) since py has variance PQ [n; and b2
has v'ariar.lce PQ [n;. Pis of course unknown, but it is unlikel

that it will be very different from the overall Pproportion 0);
successes in the two samples, p = x/n, where x = x,+x,

and n = n1+ng. We can therefore construct a significance
test by calculating the quantity

J — b1—p2
1 1
\/P?l(“ + ~>

AN U &

whic\h should, on thc_ null hypothesis that the two probabilitics
ar% cqual, be lapproxnnately a standard normal variate.

or example, we find from Table 2 on p. 13 that the pro-
portion of stilllbirths among 368,490 mzﬁe births in 1p956
f\Ivas i023'36 while the proportion of stillbirths among 384,250
;:m}all ¢ births was -02239. The proportion of stillbirths in
oth sexes was -02289. Hence the estimated variance of

Pr—p2is
02289% 97711 (. L . 1 N _ .o ;
(368,490 T 3ag,950) — 1249%107
and so
102336 —-0223
d = 289 _ 9.75.

V12-49% 10-8

The probability that a standard normal variate will exceed
2-75 in absolute value is only -006. It can be concluded that

the1 sex difference in the stillbirth rates is almost certainly
real.

TEests Basep oN THE f DistrisuTion

Suppose that we have made a number of ohservations
¥15 %2, .., ¥n on some random variable which has mean ,u,
and variance q2, and that we wish to test the hypothesis that p
has some particular value which we will denote by wo. The
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natural way of doing this is to calculate the sample mean, %,
and see whether it is approximately equal to wo. If o = po
then # will, in repeated samples ol size 7, be approximately
normally distributed with mean g and variance o2/n and so,

if we calculate the quantity

__X—po

o/ Vn

and rcject the hypothesis that g = o whenever | d | is greater
than 1-96, the probability of rejecting this hypothesis when it
is true will be approximately 5 per cent; if we wanted to
work at the 1 per cent level we would reject the hypothesis
when | d | is greater than 258, and so on. If we knew that p
cannot be smaller than pg then we would use a one-tailed test
and we could reject the null hypothesis at the 5 per cent level
whenever d was greater than 1-64, but of course we would then
be debarred from rejecting it when d was negative, however
large its absolute value was.

For example, we have seen that the intclligence quotient
is defined in such a way that its mean value in the general
population is 100 with standard deviation 16. Suppose
that we measured the 1.Q. of 25 university lecturers to see
whether their intelligence was above average. Our null
hypothesis is that the 1.Q. of university lecturers as a class has
the same distribution as that of the general population. If this
hypothesis were true then the averagc 1.Q. of a group of
95 lecturers should be very nearly normally distributed with
mean 100 and standard deviation 16/5 = 3-2; that is to say,
if we computed the average 1.Q.’s of a large number of ran-
domly chosen groups of 25 lecturers we should generate a
normal distribution with these parameters. We should
probably be prepared to assume beforehand that the true mean
1.Q. of university lecturers is not less than 100, and so we could
reject the null hypothesis at the 5 per cent level if ¥ was greater
than 100-4-1-64x3-2 = 105-25, since the probability that
# would be greater than this value if the null hypothesis were
true is S per cent.

The above example is rather exceptional since both the mean
and the variance of the underlying distribution are specified
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by the null hypothesis; usually only the mean will be specified
and the variance must be estimated from the data. Suppose
for example that we have developed a method for estimating
the conce.ntration of some chemical compound in solution
and that 1n.order to test the adequacy of the method we havé
made n estimates on a solution of known concentration p.
The x/s must of course be regarded as random observations
from a probability distribution with mean p and variance o2
and the null hypothesis which we want to test is that p = p 7
How can this be done if o2 is unknown? "
One answer to this question is that we should compute 52
the unbiased estimator of o2, from the data and assume tha;
o= The argument is that if the number of observations
1s not too small s will be a fairly accurate estimate of o and so
we shall not go far wrong in assuming that they are the same.
However, this argument breaks down if n is small. What is
to be done then?
. This was the question which ‘Student’ set out to answer
n 1908 in his paper on “ The probable crror of a mecan”
Ul’ltl.l theq it had been assumed that one would always be-
dealing with large samples, and could use the appropriate
large.sample approximations, because small samples werce too
u.nreh.ab‘le to be of any value. The climate of opinion at that
time is illustrated by a playful remark of Karl Pearson, in a
letter to ‘Student’ in 1912, that it made little difference w};ether
the sum of squares was divided by z or n—1 in estimating the
standard deviation ““ because only naughty brewers take n so
small that the difference is not of the order of the probable
error! 7. ‘Student’ had found, however, that in his practical
work for Guinness’ brewery he was often forced to deal with
samples far too small for the customary large sample approxi-
mations to be applicable. It was gradually realised after
the publication of his paper, and of R. A. Fisher’s papers on
qther problems in small sample theory, that if the sample
size were large enough the answer to any question one might
ask would be obvious, and that it was only in the case of small
and moderate-sized samples that any statistical problem arose.

$mall sample theory today lies at the hecart of statistical
inference,
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‘Student’ himself stated the problem in the following words:

Any series of experiments is only of value in so far as it
enables us to form a judgment as to the statistical constants

of the population to which the experiments belong. In a .

greater number of cases the question finally turns on the value
of a mean, either directly, or as the mean difference between
two quantities.

If the number of experiments be very large, we may have
precise information as to the value of the mean, but if our
sample be small, we have two sources of uncertainty : (1)
owing to the ‘ error of random sampling’ the mean of our
series of experiments deviates more or less widely from the
mean of the population, and (2) the sample is not sufficiently
large to determine what is the law of distribution of individuals.
It is usual, however, to assume a normal distribution, because,
in a very large number of cases, this gives a [very close]
approximation. . . . This assumption is accordingly made in
the present paper. ... We are concerned here solely with the
first of these two sources of uncertainty.

The usual method of determining the probability that the
mean of the population lies within a given distance of the mean
of the sample is to assume a normal distribution about the
mean of the sample with a standard deviation equal to s/+/7,
where s is the standard deviation of the sample, and to use the
tables of the probability integral.

But, as we decrease the number of experiments, the value
of the standard deviation found from the sample of experi-
ments becomes itself subject to an increasing error, until judg-
ments reached in this way become altogether misleading. . . .

Although it is well known that the method of using the
normal curve is only trustworthy when the sample is ‘ large °,
no one has yet told us very clearly where the limit between
“large * and ¢ small > samples is to be drawn.

The aim of the present paper is to determine the point
at which we may use the tables of the probability integral
in judging of the significance of the mean of a series of experi-
ments, and to furnish alternative tables for use when the
number of experiments is few. i

The mathematical problem of finding the sampling dis-
tribution of .
L o
s/Vn
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on the assumption that the observations come from a normal
distribution with mean u was considered in the last chapter
and it was shown that this quantity should follow the ¢ distri-
bution with n—1 degrees of freedom. As an illustration of the
use of the ¢ distribution ‘ Student ’ considered some data showing
the effects of two drugs in producing sleep. The sleep of ten
patients was measured without hypnotic and after treatment
(1) with hyoscyamine and (2) with hyoscine. The results
are given in Table 19. Three questions can be asked about

TaBLE 19
Additional hours’ sleep gained by the use of two drugs (‘Student’, 1908)
Patient Hyoscyamine Hyoscine Difference
1 +0-7 +1-9 +12
2 ~1-6 +0-8 +24
3 —0-2 +1-1 +1-3
4 —1-2 +0-1 +13
5 —0-1 —0-1 0
6 +3-4 +4-4 +1-0
7 +3-7 +55 +18
8 +0-8 +16 +08
9 0 +46 +46
10 +2-0 +3-4 +14
x +0-75 +2-33 +1:58
s 179 2-00 1-23
x
t = — +1-32 +3-68 4.06
s/V'10 *

these data: (1) Is the first drug a soporific? (2) Is the second
drug a soporific? (3) Is there any difference between the
soporific effects of the two drugs? The null hypothesis in
each case is that p = 0. To answer the first question we con-
sider the first ¢ value, ¢ = 1-32. If the first drug is not a sopo-
rific then this quantity should follow the ¢ distribution with 9
degrees of freedom.  We could presumably assume before doing
the experiment that neither of the drugs would actually keep
the patients awake and so a one-tailed test is appropriate.
We find from tables that the probability that a ¢ variate with
9 degrees of freedom will be greater than 1-32 is about 11 per
cent; therefore we cannot reject with any confidence the
hypothesis that the first drug is ineffective. On the other
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hand, the probability that such a ¢ variate will be greater
than 3-68 is only about 1 in 400 and we can reject with con-
siderable confidence the hypothesis that the second drug is
not a soporific.

The reader might think that these two tests taken together
have answered the third question. This, however, is not so
since the first test does not show that the first drug is not a
soporific but only that there is insufficient evidence to justify
an assertion that it is. To answer the third question we must,
therefore, do another test on the ten differences shown in the
last column of Table 19. The appropriate ¢ value is 4-06.
This quantity should, if the two drugs have the same soporific
effect, follow the ¢ distribution with 9 degrees of freedom.
We must, however, do a two-tailed test in this case since there
was no reason before the experiment was done to know which
of the drugs would be more effective. The probability that a
t variate with 9 degrees of freedom will be greater than 4-06
is -0014, and so from the symmetry of the distribution the two-
tailed probability is -0028, or about 1 in 350. We can, there-
fore, reject with some confidence the hypothesis that the two
drugs are equally effective.

‘Student’ considered only the problem of testing whether
a set of observations with mean % could have come from a
distribution with mean x. In 1925, Fisher pointed out that
the ¢ distribution could be applied to a number of other
problems, and in particular to testing whether the means of
two populations are the same. Suppose that we have made m
observations, xy, X2, ..., x,, on a random variable X and =
independent observations, %, ¥2, ..., ¥a, on another random
variable Y. It will be assumed that X and Y are normally
distributed with the same variance, o2, but that their means,
w1 and py, may be different; we wish to test whether py = p,.
We define

§1= ¥ (i)
=1

S3= 3 (e

§2 = 82482

s2 = 82/(m+n—2).
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Then % —j will be normally distributed with mean j; —u, and
. I 1 . o
variance ¢4 - + - ), and $2/02 will follow a ¥2 distribution

m n

with m--n—2 degrees of freedom independently of #—3,
because of the additive property of 2 variates. It follows that
= 7

LR
m n

will follow the ¢ distribution with m-}-n—2 degrees of freedom
if py = po.

The assumption that the two distributions have the same
variance is essential to this argument. If this assumption
cannot be made it would seem natural to consider instead the
quantity

¢ = 7 .
\/,Jj_. 5%
(m—Y)m = (n—1)n
This quantity is approximately a standard normal deviate if
m and n are large since the variance of X—j is o?/m + o/n,
where o} and o are the variances of X and ¥, which can be
estimated by $2/(m—1) and S2/(n—1) respectively. However,
¢’ cannot be treated as a ¢ variate when m and n are small
since the square of the denominator cannot be made into a y2
variate by multiplying it by a constant. Fortunately it can
usually be assumed in practice that ¢? = ¢2 since we most
often wish to test the hypothesis that p; = pg; it is rather
unlikely that the two distributions should have the same means
but different variances.

To illustrate this use of the ¢ test Fisher considered some data
from part of an electro-culture experiment at Rothamsted
i 1922. Eight pots, growing 3 barley plants each, were exposed
to the action of a high tension discharge, while nine similar
pots were enclosed in an earthed wire cage. The number of
shoots in each pot were as follows:

Electrified 16, 16, 20, 16, 20, 17, 15, 21
Caged 17, 27, 18, 25, 27, 29, 27, 23, 17.
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The means of the two groups are 17-6 and 23-3 respectively,
while the sums of the squared deviations from their means

are 38 and 184; hence

$2 — 384184 = 299
52 = 222/15 = 146
_. 176233 59
VIE6(3+3)

The probability that a random variable following the ¢ distri-
bution with 15 degrees of freedom will exceed this figure in
absolute value is between 0-5 per cent and 1 per cent and we may
therefore with some confidence reject the hypothesis that the
means of the two populations are the same.

It should be noticed that this method is valid only if the two
samples are independent of each other. It would, for instance,
be quite wrong to use it on the data in Table 19 (p. 149) instead
of analysing the differences in the last column; for the two
observations on the same patient are quite highly correlated.
This correlation is partly due to the fact that both figures are
differences from the same control period of sleep; it is also
likely that the responses of the same patient to the two drugs
will be more alike than those of different patients. It would be
appropriate to analyse the difference between the means rather
than the mean of the differences only if the two drugs had been
used on two different groups of patients.

The ¢ test is based on the assumption that the underlying
distribution is normal. When the number of observations is
large we are protected by the central limit theorem since the
sample mean will become approximately normally distributed
almost regardless of the underlying distribution and will also
be the dominating term; ¢ will thus become approximately

a standard normal variate in large samples whatever the under-
lying distribution maybe. Severalinvestigations, both empirical
and theoretical, have been made to determine the effect of
non-normality on the distribution of ¢ in small samples. The
general conclusion is that the distribution is remarkably
insensitive to small or moderate departures from normality,
and that one need not worry about this provided either that
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the. non-pormality is not extreme or that the number of obser-
vations is not too small; the term °robustness’ has been
coined to describe this satisfactory property of a significance
test. However, if neither of the above conditions is fulfilled
one may ’t.)c led into serious error. For example, Nair (1941)
bas Investigated empirically the distribution of ¢ in samples of
size 6 when the underlying distribution is exponential and has
found tha.t about 10 per cent of the values were greater in
absolute size than 257, which is the two-tailed 5 per cent point
of thfe t distribution with 5 degrees of freedom; this means
that if we used a two-tailed ¢ test in these circu)lmstanccs we
should actually be working at a 10 per cent significance level
when the nominal level was 5 per cent. This example is
rather extreme but it shows that it is necessary to have some
altcrnative test which can be used when the assumption of
normality is not justified.

A considerable amount of work has been done in recent years
on the development of non-parametric or distribution-free
methods which do not necessitate any assumptions about the
form‘of the underlying distribution. There is space here to
describe only the simplest of these tests, which depend on the
use of the median rather than the mean. Let us consider
as an example the data on the soporific effects of hyoscine.
If this (.irug had no effect an observation should have an equal
pro_b:abllity of being positive or negative and the number of
positive .observations should, therefore, follow the binomial
fhstmbut.lon with P = 1. In fact, of the 10 observations 1
1s negative and 9 are positive, The probability, if the null
h_ypot.hesm is true, of obtaining either 1 or 0 negative observa-
tions is (10-1)/1024 = -011; this is a small probability and
we can therefore reject the null hypothesis. It will be noticed

 that the probability is not as small as the probability obtained

from thf.t Ltest; it is clear that some information has been wasted
by considering only the sign of the observations and ignoring
_the1r magnitude. The two-tailed probability, which takes
nto account the possibility that 9 or 10 negative observations
might h_ave been observed, is <022, but the one-tailed test is
appropriate in this case since we can predict in advance that the
probability of a negative observation is either 3 or less than 1.
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For details of other non-parametric methods, and in par-
ticular of the Mann-Whitney U test, which is in many ways
more satisfactory than the tests based on medians, the reader
is referred to Siegel’s book Non-parametric Statistics. These
methods have acquired a considerable vogue, particularly
among social scientists and psychologists, but in my view they
are rarcly necessary because of the robustness of most para-
metric tests, and they have the serious disadvantage of being
less flexible than parametric methods, so that it is difficult to
adapt them to suit the situation and it is difficult to derive
confidence intervals from them.

Tue x2 Test oF Goobwnrss oF Frr

A problem which frequently arises is that of testing the
agrecment between observation and hypothesis. The most
useful measure of agreement, which can be applied whenever
the observations can be grouped either naturally or artificially
into a finite number of classcs, is the x2 criterion devised by
Karl Pearson (1900). Suppose then that we have made n
obscrvations which can be grouped into £ classes. We will
write n; for the observed number of observations and F;
for the Expected number of observations in the ith class; thus
E; — nP; where P; is the probability, calculated from our
hypothesis, that an observation will fall in the 7th class. The
x2 criterion of goodness of fit is defined as

t=1 Ei

If there is perfect agreement, then n; = E; for all i and y2 = 0;
the worse the fit, the larger x2 will be.

For example, we find from Table 11 on p. 82 that the
observed and Expected frequencies of the number of heads in
2000 sequences of 5 spins of a coin are:

No. of heads 0 1 2 3 4 5 Total
59 316 596 633 320 76 2000
Expected frequency 62-5 3125 625 625 3125 625 2000
Difference —35 +3%5 =29 +8 475 +135 0

Observed frequency
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For these data
3-52 3-52 13-52
2 — 200 4 o 22 g
625 3125 teet 625 +78.

In this example the theoretical probabilities, P;, are known
fixactly. In most applications, however, these probabilities
involve one or more unknown parameters which must be esti-
mated from the observations before the Expected numbers
can be calculated. Thus in Table 12 on p. 89 the prob-
ability of a male birth had to be estimated from the observed
proportion of boys before the Expected numbers of families
with different numbers of boys in them could be calculated
from the binomial formula; similarly in Table 17 on p. 113
the mean and variance of the observed frequency distribution
had to be calculated before a normal distribution could be
ﬁttf:d. The fact that one or more parameters have been
estimated from the data before the Expected numbers could be
pbtairled does not affect the way in which the ¥2 criterion
1s calculated; for example, for the data in Table 12

, _ (215-165)2 (342 —264)2
T +. ST = 92-1.

It. docs, however, affect the sampling distribution of the
criterion and in consequence the interpretation to be placed
upon it once it has been calculated.

. An .important group of applications of the y2 criterion is
in testing for independence in contingency tables. On p. 13
we considered the following data on the sex and viability of

- births in England and Wales:

, : Liveborn Stillborn Total
Male ’ 359,881 (360,056) 8,609 (8,434) 368,490
Female 340,454 (340,279) 7,796 (7,971) 348,250

Total 700,335 16,405 716,740

Such a table is called a 22 contingency table since each of
the characters (sex and viability) is divided into two classes.
If sex and viability were independent of each other the prob-
ability of a male livebirth would be the product of the overall
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probabilitics of these two events, which can be estimated from
the corresponding marginal proportions. Hence the Expected
number of male livebirths, supposing these factors to be
independent, is calculated as

368490 700335
716740 © 716740

The other Expected numbers can be calculated in a similar way
and are shown in brackets. The difference between observed
and Expected numbers is in each case 175 in absolute value,
so that the x2 criterion for departure from the hypothesis of
independence is '

1752 1752 I 1752 1752
360056 = 340279 @ 8434 = 7971

716740 x = 360,056.

2

7-56.

We have seen that if there is perfect agrecement between
observation and hypothesis x2 = 0 and that the worse the
agreement the larger x2 1s. In order to interpret an observed
value of this criterion we must know its sampling distribution
on the assumption that the hypothesis being tested is true.
We shall now show that the x2 criterion follows approximately
the x2 distribution with £ —1—p degrees of freedom, where &
is the number of classes into which the observations are divided
and p is the number of parameters which have been independently
estimated from the data; it is from this fact that the 2 distri-
bution gets its name. We must imagine that a large number
of experiments have been performed in each of which n obser-
vations, classified into k£ groups, have been obtained and the
x2 criterion calculated; what is the probability distribution
generated by the different values of y2 assuming that the
hypothesis being tested 1s true? We consider first the case
in which the probabilities, P;, are specified completely by
hypothesis and no parameters need to be estimated.

Suppose then that n observations have been made and that
the probability that a particular observation will fall into
the ith class is P;. The number of observations falling in the
ith class will vary from experiment to experiment and is there-
fore a random variable. By an extension of the argument
used in deriving the binomial distribution it is quite easy to
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show that the probability that n, observations will fall into the
first class, 7, into the second class and so on, is

n!
P(ny, ngy ...y my) = — — PPPY. P
nylny...om!

where, of course
Pi+-Pr+.. +P, =1
n+ny4. . 4n = n.

This distribution is called the multinomial distribution (sec
Problem 6.10). The binomial distribution is a special case of
the multinomial distribution with £ = 2.

The numbers of obscrvations are not independent random
variables but are negatively correlated; for on the occasions
yvhcn the number of observations in the first class, for example,
1s above average we should expect the other numbers to be on
the average rather low since their sum is fixed. In the case
of ‘thc binomial distribution there is complete negative corre-
latlpn since 7y == n—n;. The n’s can, however, be regarded
as independent Poisson variates with y; == nP; subjcctkto the
rcstriction that their sumis z; that is to say, their distribution
1s the same as that which would be obtained if we took #
ir}dependent Poisson variates with these means and then
discarded all the occasions on which they did not add up to the

fixed number z. For the joint probability distribution of
these independent Poisson variates is

¢—"P {nPl)m e~ ((lP‘k)j‘j = ¢ My I }A)_lrjiiplf’:

ny! n! mlong!

and the probability that they will add up to n is

since, by the additive property of Poisson variates, ¥ n; is itself
a Poisson variate with mean YnP; =n. If we divide the
first expression by the second to obtain the conditional prob-
ability distribution of the n;'s given that they add up to n,
we get the multinomial distribution.
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Suppose then that ny, ny, ..., n; are independent Poisson
variates with means nPy, nP,, ..., nP,; then

_(ng—nPy)
&=

has zero mean and unit variance and is approximately normally
distributed provided that zPs is not too small. Let us now
make an orthogonal transformation from the ¢'s to a new set
of variables %7 in which

1 = ﬁ VP

=1

% .
and let us impose the restraint that Z ng =n which is
Ire

=1
equivalent to 27 = 0. It follows from the theorem in the last

chapter that k k
2=y 3= 31

follows approximately the x2 distribution with k—1 degrees of

freedom. For this approximation to hold it is necessary that

the Expected values, nP;, should not be too small; it has been

found empirically that the approximation is satisfactory,

provided that each of them is greater than 5.

So far we have considered only the case when the probabilities
are specified completely by hypothesis. If one or more
parameters have to be estimated from the data, this will clearly
decrease the average value of x2 since they will be estimated to
make the fit as good as possible. It can in fact be shown that,
provided the parameters are estimated in a reasonable way,
each independent parameter estimated is equivalent to placing
an additional linear restraint on the observations. Hence,
if p parameters are independently estimated, x will follow
approximately the x2 distribution with £—1—p degrees of
freedom.

It should be noted that in the 2 X2 contingency table con-
sidered on p. 155 only two parameters, and not four, have been
independently estimated from the data since, once the probahility
of a male birth has been estimated as 368490/716740 = -5141,
it follows immediately that the probability of a female birth

9. TESTS OF SIGNIFICANCE 159

will be estimated as 1—-5141 = -4859 and likewise for live-
birth v. stillbirth; the y2 criterion for testing the independence
of these two factors therefore follows a y2 distribution with
4—2—1 =1 degree of freedom. In the general case of an
rXs contingency table in which the first character is divided
into 7 classes and the second into s classes only 745 —2 marginal
probabilities are independently estimated since the last
relative frequency in the row margin is known once the previous
r—1 relative frequencies have been calculated, and likewise for
the column margin. Hence the ¥2 criterion of independence
follows the ¥2 distribution with rs —1 —(r4+s5—2) = (r—1)(s—1)
degrees of freedom.

Several experiments have been done to verify the foregoing
theory. In one set of experiments Yule threw 200 beans into
a revolving circular tray with 16 equal radial compartments
and counted the number of beans falling into each compart-
ment. The 16 frequencies so obtained were arranged (1) in a
4 x4 table, and (2) in a 28 table. Then 2 was calculated
as for testing independence in a contingency table. This
experiment was repeated 100 times; the observed and theo-
retical distributions are shown in Table 20.

TasLe 20

Distribution of x2 in Yule’s experiment with beans
(Yule and Kendall, 1950)

4x4 8x2
"Observed Expccted‘ “Observed Expected‘
x2 (9 d.f.) (7 d.f.)
0-5 17 17 30 34
5-10 44 48 56 47
10-15 32 26 10 15
15-20 6 7 3 3
Over 20 1 2 1 1
Total 100 100 100 100

A less artificial realisation of the distribution of the x2
criterion may be found in a paper by Chamberlain and Turner
(1952). These authors did duplicate white cell counts on 294
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slides of blood obtained from a finger puncture; 100 white
cells were counted in each count and divided' into three_clafsses,
neutrophils, lymphocytes and others. A typical result is given
below:

Neutrophils ~ Lymphocytes Others Total

First count 57 21 22 100
Second count 52 28 20 100
Total 109 49 42 200

For cach slide the x2 criterion for testing the .independence
of the two counts was calculated ; for the above shide x* = 1-32.

TasBLE 21

Distribution of 2 in duplicate white cell counts

x2 Observed  Expected

0-00-0-04 5 6
0-04-0-10 11 9
0-10-0-21 14 15
0-21-0-45 29 29
0-45-0-71 26 29
0-71-1-39 59 59
1-39-2-41 62 59
2-41-3-22 19 29
3-22-4-60 25 29
4-60-5-99 26 15
5-99.-7-82 9 9
Over 7-82 9 6

Total 294 294

The distribution of the 294 values of x2 is shown in Table 21
together with the theoretical X2 distribution with 2 degrees of
freedom (exponential distribution). -

It remains to construct a significance test. Since small
values of y2 indicate good agreement with hypothesis we wish
to reject the hypothesis only when 2 is large. We therefore
calculate the probability of obtaining a value of x2 greater t.ha'n
the observed value on the assumption that the hypothesis 1s
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true and that in repeated sampling the y2 criterion will there-
fore follow the y2 distribution with the appropriate number
of degrees of freedom; if this probability is small we reject
the hypothesis, otherwise we accept it.

For example, for the coin data considered on p. 154 at the
beginning of this section x2 is 478 with 5 degrees of freedom;
the probability, P, that a x2 variate with 5 degrees of freedom
will be greater than 4-78 is -44 and there is thus no reason to
reject the hypothesis that the data follow a binomial distribution
with probability §. For the sex ratio data of Table 12 considered
on p. 155 x2 is 92-1 with 7 degrees of freedom (£ =9, p = 1)
and P 1s very small (less than one in a million) ; we can therefore
reject the hypothesis that these data follow a binomial distribu-
tion exactly with some confidence, although inspection of the
table will show that the proportional deviations from the
binomial distribution are fairly small, and that it is thus not a
bad approximation. For the 2 X2 contingency table on the
sex and viability of births in England and Wales (p. 155)
x2 = 7-56 with 1 degree of freedom for which P = -006; it
can be concluded that these factors are probably not indepen-
dent. The result of this test is the same as that obtained by
comparing the proportions of stillbirths in the two sexes on
p. 145; the two tests are in fact identical since the x2 value
with 1 degree of freedom is identically equal to the square of
the standard normal variate considered there.

Exercises

9.1. In one of his experiments (see Table 5 on p. 22) Mendel observed
705 plants with purple flowers and 224 plants with white flowers in plants
bred from a purple-flowered x white-flowered hybrid. Test the hypothesis
that the probability of a purple-flowered plant is §.

9.2. 200 women are each given a sample of butter and a sample of
margarine and asked to identify the butter; 120 of them do so correctly.
Can women tell butter from margarine?

9.3. In a similar test among 200 men, 108 identify the butter correctly;
is there a sex difference in taste discrimination?




162 PRINCIPLES OF STATISTICS

9.4. To test whether it 1s of advantage to kiln-dry barley bcfo.re sovying,
eleven varieties of barley were sown (both kiln-dried and not kiln-dried);
the yields, in 1b. head corn per acre, are given below:

Kiln-dried 2009 1915 2011 2463 2180 1925 2122 1482 1542 1443 1535

NOt. 1903 1935 1910 2496 2108 1961 2060 1444 1612 1316 1511
kiln-dried

Test whether there is any advantage in kiln-drying. [* Student’, 1908]

9-5. Use the data in Table 22 on p. 210 to test (a) whether there is an
increase in comb-growth in capons receiving 3 mg androsterone, (b)
whether there is an increase in capons receiving 4 mg, (¢) whether there
is any difference in the increase between capons receiving 4 mg and 8 mg

[NOTE: in doing any part of this question ignore the data not (:{irectly
relevant to it, although the rest of the data could be used in estimating o2.]

9.6. For Weldon’s dice data in Exercise 6.4, (a) test whether P= % by
comparing the total number of successes with its Expec%ed value, (b) test
whether the data with P == p follow a binomial distribution.

9.7. Test the goodness of fit of the Poisson distribution to th.e data: (a)
in Table 13 on p. 92, (4) in Table 15 on p. 96, (c) in Exercise 6.6. In

calculating x2 remember that no class should have an Expected value less
than 5.

9.8. Test the goodness of fit of the normal distribution (a) to the data in
Table 17 on p. 113, () to the distribution of head breadth in Table 10 on
p. 40 (sce Exercise 7.4).

9-9. Use the data in Table 3 on p. 18 to test (¢) whether the red die. is
unbiased, (4) whether the white die is unbiased, (¢) whether the two dice
are independent.

9.10, Consider a typical 2 X2 table:

A not 4 Total

B a b a-t+b

not B ¢ d cd
Total a}c b+d | n

Show that the y? criterion for testing independence is given by the formula

. n(ad—be)? B
X (a4b) (eFd) (a-e) (b+-d)
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9.1x.  Fisher quotes the following data of Lange on the frequency of
criminality. among the monozygotic and dizygotic twins of criminals:

; Convicted Not convicted [ Total
o . R
Monozygotic ’ 10 3 13
Dizygotic 2 15 17
. | .
Total ’ 12 18 ' 30

Test whether monozygotic twins of criminals are more likely to be
criminals therselves than are dizygotic twins by calculating % (a) from
(O-E)2

the formula, y?== Z 7 (6) from the formula in the previous exercise.

(In (a), O and E stand respectively for the observed and the expected
number of observations in a class.)

9.12. Yates suggested that, when the numbers in a 2 X2 table are small,

a better approximation to the * distribution would be obtained from the
criterion

O-E| 1)

X2 == Z (L_ - 1” — ~)

in which the absolute value of each deviation is reduced by % befere it is

squared, on the analogy of the correction for continuity in evaluating the

tail of the binomial distribution by the normal distribution (see p. 119)
Show that this corrected y2 criterion can be calculated from the formula

n( [adfbc | ~3n)2
(@ FD)(etd) (o) (6 Fd)
Calculate the y* criterion with Yates’ correction for the data in the

previous exercise (a) from the original definition, (6) by using the above
formula.

Xt

Problems

9.1. A sampling scheme to control the quality of loads of bricks consisted
of taking simple random samples of size n from cach load, determining
their mean specific gravities %, and accepting a load as satisfactory or
rejecting it according as £ < ¢ or # > ¢. It was decided that if p, the
mean specific gravity of a load, exceeded 2-38 the probability of its rejection
should be at least 0-99 while if . < 236, the probability of its acceptance
should be at least 0-95. The standard deviation of specific gravity in a
load could be taken as 0-015. Find the smallest value of z satisfying these
requirements and the corresponding value of ¢. [Certificate, 1958]
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9.2. Consider the typical 2 x2 table in Exercise 9.10. If the two criteria
of classification were male/female and liveborn/stillborn and if these were
independent of cach other the observed numbers (a, b, ¢, d) would follow
a multinomial distribution and the two sets of marginal totals would
follow independent binomial distributions with probabilities depending on
the probabilities of male birth and of stillbirth. On the other hand, if we
were testing the effect of some drug and the criteria were cured/not cured
and treated/unireated then the numbers of patients treated and untreated
is fixed by the experimenter and is not a random variable; in this case the
numbers of people cured in the treated and untreated groups follow indepen-
dent binomial distributions, and the total number cured also follows a
binomial distribution if the treatment has no effect. Write down the
probabilities of the observed table and of the marginal totals in each case
on the assymption of independence and hence show that in both cases
the probability of obtaining the observed numbers, conditional on the marginal
totals being what they are, is

(a+b) Y (o-+-d) a-te) 1(o-+d) !

nlalblcld!

Note that this is independent of the unknown probabilities of the events.

9.3. A significance test for independence in a 2 X 2 table can be obtained
by calculating the probability of the observed table, conditional on the
marginal totals being as observed, together with the probabilities of all
tables with the same marginal totals which are more extreme (i.e. have a
lower probability) than the observed table. This exact test, which can
be used however small the numbers in the table, is due to R. A. Fisher
(1925) who illustrated it by considering Lange’s data on the frequency of
criminality among the monozygotic and dizygotic twins of criminals
(Exercise 9.11). Perform Fisher’s exact test on these data using (a) a
one-tailed, (§) a two-tailed test. Which test is appropriate ?

9.4. Ifseveralindependentsignificance tests have been made of a hypothesis,
giving significance levels P, P,, ..., P,, the overall level of significance
cannot be obtained by multiplying these probabilities together. Why
not?

If X is uniformly distributed between 0 and 1 prove that —2 logeX is a
x® variate with 2 d.f. (sece Problem 3.2) and show how this fact can be
used to combine the results of independent significance tests. If three
tests have given significance levels of 145, -263 and -087 how would you
assess their overall significance ?

CuapTER 10

STATISTICAL INFERENCE

Considerable controversy has arisen about the general prin-
ciples which should be adopted in making statistical inferences.
Unfortunately this controversy has been marred in the past
by personal polemics, in consequence of which many statis-
ticians are reluctant to continue the debate in public. This
seems to me doubly unfortunate since it is impossible to form a
balanced view of statistical inference unless all sides of the
argument are considered and since it is also a subject of great
intrinsic interest. In this chapter I shall, therefore, try to
give a critical account of these different points of view. This
account will inevitably be coloured by the fact that my own
sympathies lie with the adherents of the frequency viewpoint,
who rely on significance tests and confidence intervals; but
I can see the attractions of other viewpoints and I shall try to
present their case fairly and without rancour. The reader must
eventually make up his own mind. I shall begin by discussing
the ‘ orthodox’ methods developed by the {requency school
of thought.

SieN1FIcANCE TESTS AND CONFIDENCE INTERVALS

The significance test procedure was defined in the preceding
chapter; we must now consider how the result of such a test
is to be interpreted. Firstly, a popular misconception must
be cleared up. The rejection of a hypothesis at the 5 per cent
level does not imply that the probability that the hypothesis
is false is *95; it merely implies that the observed result belongs
to a class of results whose overall probability of occurrence,
if the null hypothesis is true, is -05. This provides good reason,
in the sense of rational degree of belief, for supposing the
hypothesis to be false, but no numerical value can be placed
upon this degree of belief.

103
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It is also important to understand the meaning of ¢ accept-
ing’ and ‘rejecting’ the null hypothesis. If a significance
test results in the acceptance of the null hypothesis, it does not
follow that we have grounds for supposing this hypothesis
to be true but merely that we have no grounds for supposing
it to be false. If only a few observations have been made, the
power of the test will be low and we shall be unlikely to detect
even quite large departures from the null hypothesis; failure
to reject the null hypothesis under such circumstances clearly
cannot be interpreted as positive evidence in its favour. If a
large number of observations have been made, common sense
tells us that the null hypothesis is unlikely to be far from the
truth when it is accepted, since the test will be very powerful
and there will be a high probability of detecting even a small
departure from the null hypothesis. We require further infor-
mation, however, to turn this common sense interpretation
into an exact argument. Strictly speaking, therefore, a signi-
ficance test is a one-edged weapon which can be used for dis-
crediting hypotheses but not for confirming them. As Jeffreys
(1961) remarks in criticising the orthodox theory of significance
tests: “ The scientific law is thus (apparently) made useless
for purposes of inference. It is merely something set up like
a coconut to stand until it is hit.”

If a significance test results in the rejection of the null
hypothesis we have reason to suppose that it is false, but we
have no information about Aow false it may be. Thisleads to the
conclusion that a significance test can be too powerful. For
we do not usually expect any hypothesis to be exactly true and
so we do not want to reject a hypothesis unless we can be fairly
sure that it differs from. the true hypothesis by an amount
sufficient to matter. If, however, we take a large enough
sample and the power of the test becomes sufficiently high,
we may expect any hypothesis differing, however little, from
the null hypothesis to be rejected. This paradox was first
pointed out by Berkson (1938) in discussing the x2 test of the
goodness of fit of a normal distribution. He writes:  We
may assume that it is practically certain that any series of
real observations does not follow a normal curve with absolute
exactitude in all respects, and, no matter how small the
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discrepancy between the normal curve and the true curve of
observations, the chi-square P will be small if the sample has a
sufficiently large number of observations in it.”

The significance test procedure thus suffers from two serious
disadvantages, that it can only be used for discrediting hypo-
theses, and that we do not know whether the discredited
hypothesis is a good approximation to the truth which can be
retained as such or whether it is a bad approximation which
must be discarded. These disadvantages are largely overcome
in the method of confidence intervals which was first explicitly
formulated by Neyman and Pearson in the 1930s and which
will now be discussed.

A confidence interval is an interval constructed from the
observations in such a way that it has a known probability,
such as 95 per cent or 99 per cent, of containing some para-
meter in which we are interested. For example, if x heads
and n—x tails are observed in n throws of a coin,. then the
variable p = x/n will be approximately normally distributed
with mean P and variance PQ /n; to the same order of approxi-
mation we can use the estimated variance pg/n instead of the
true but unknown variance. It follows that there is a
probability of very nearly 95 per cent that the standardised
variable (p —P )V/n/pg will be less than 1-96 in ahsolute value;
but this is equivalent to saying that P will lie within the limits
p+1-96Vpg/n. If, therefore, we were to repeat the experi-
ment a large number of times and at each repetition calculate
these limits and assert that P lay within them, we would be
correct in our assertion about 95 per cent of the time. We have
thus found a method of constructing an interval which has a
known probability of containing this parameter, that Is to say
a confidence interval for P.

Suppose, to take another example, that n observations
have been made on a normal variate with mean p and variance
02 so that the sample mean, %, is normally distributed with
mean p and variance o2/n. If we knew o we could obtain a
95 per cent confidence interval by asserting that p lay between
the limits £--1-960/ V'n, since there is a 95 per cent probability

that —pu will be less in absolute value than 1-96¢/V/n, which is
equivalent to the previous statement. If we do not know ¢
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we can use the estimated standard deviation, s, in its place,
but we must then replace 1-96 by the corresponding percentage
point of the ¢ distribution. For we know that Vn(f—p)/s
follows the ¢ distribution with n—1 degrees of freedom; there
is, therefore, a 95 per cent probability that this quantity will be
less in absolute value than t*, the upper 974 per cent point
of this ¢ distribution. But this is the same as saying that p will

liec between the limits Z-4-st*/Vv'n, and so, if we assert that u
does lie between these limits, we shall have a 95 per cent
probability of being correct; that is to say, if we make a habit
of calculating these limits and asserting that p lies between
them we shall in the long run be correct in our assertion 95
times out of 100.

In interpreting the meaning of confidence intervals it is
important to remember that it is the interval which is the
‘random variable > and not the parameter. For example,

when &-4-st*/V7n is taken as a confidence interval for p, it
is clear that £ and s are random variables which vary from
one experiment to the next and in consequence cause the
interval to vary, both in its centre through variation in #
and in its width through changes in s; p, on the other hand,
is a fixed but unknown constant which has a known probability
of being contained somewhere in the interval. We must
therefore think of the interval as a random interval which has a
known probability of containing the fixed point u. It follows
that when % and s have been calculated in a particular experi-
ment and have become known quantities it is no longer correct
to say that p has a probability of 95 per cent of lying in this
particular interval; for this would be to regard p as a random
variable, whereas in fact it is a constant which either does
or does not lic in the interval, although we do not know
which.

There 1s a close relationship between confidence intervals
and significance tests which illuminates the meaning of both
these procedures. A significance test to examine the hypothesis
that a parameter 6 has the particular value 6, can be performed
by constructing a confidence interval for # and rejecting the
hypothesis whenever 8y lies outside the interval and accepting
it otherwise. Conversely, a confidence interval for 8 can be
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constructed by performing significance tests on all possible
values of # and then including in the interval those values which
are accepted and excluding from it those values which are
rejected by these tests. A confidence interval is therefore
much more informative than a single significance test on one
particular value of the parameter, and can answer the questions
which a significance test cannot answer, since it contains the
results of all the significance tests on every possible value of 6.

Suppose, for example, that we want to know whether or
not a coin is biased, and if so how large the bias is. If we test

_the hypothesis that the coin is unbiased by a significance test,

we can never show that the coin is unbiased, nor can we obtain
any information about the size of the bias when we can show
that some bias probably exists. If, however, we place a
confidence interval on the probability of heads, we can conclude
that the bias is at most negligible when the confidence interval
is narrow and includes, or nearly includes, 4; and we can
conclude that the bias is probably considerable when the
interval does not lie near 4. Only when the interval is wide,
that is to say when only a small number of observations have
been made, do we have insufficient information to be fairly
sure about the approximate value of P.

A confidence interval therefore enables us to answer the
questions which we wish to ask more satisfactorily than a
significance test. The significance test procedure is only
a second best upon which we can fall back in situations (for
example, in testing goodness of fit) where there is no natural
parameter on which to place a confidence interval. These two
procedures exhaust the methods of statistical inference which
have been developed by the ¢ orthodox ’ statisticians who rely
entirely upon the frequency concept of probability. We shall
now consider methods which are advocated by those who are
prepared to incorporate rational degrees of belief into their
argurments.

Bavesian METHODS

Thomas Bayes (1702-1761) was a Non-conformist minister in
Tunbridge Wells. His “ Essay towards solving a problem in
the doctrine of chances ”’, which gave rise to a new form of
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statistical reasouing, was found among his papers after his
death and published in the Philosophical Transactions of the
Royal Society, of which he was a Fellow, in 1763. It is
possible that he withheld it from publication during his lifetime
because he came to have doubts about the validity of his
method of reasoning.

Bayes’s theorem can be expressed in the formula:

Posterior probability oc Prior probability x Likelihood.

The posterior probability is the probability that some hypothesis
Is true given certain evidence, the prior probability is the
probability that the hypothesis was true before the evidence
was collected, and the likelihood is the probability of obtaining
the observed evidence given that the hypothesis is true.*
This theorem therefore enables us to evaluate the probability
that the hypothesis is true. It is clear that this is the sort of
statement which we should like to make and which the orthodox
significance test and confidence interval procedures do not
cnable us to make. The difficulty is that we cannot usually
give a frequency interpretation to the prior probability of a
hypothesis and that we are therefore forced, if we are to use
this type of argument, to introduce the idea of rational degree
of belief or inductive probability. First, however, let us see how
Bayes’s theorem works when the prior probabilities can be
interpreted in the frequency sense.

It is known that among Europeans about one-third of twins
born are identical and two-thirds non-identical. Thus if we
know that a woman is about to give birth to twins the prob-
ability that they will be identical is 3 and the probability
that they will be non-identical %; these are the prior prob-
abilities.  (Strictly speaking we should take the woman’s
age into account since it has an effect on these probabilities,
but this complication will be ignored.) Suppose now that the
twins are born and that they are both male and both have
the same blood groups, 4, M and RA*; suppose furthermore
that the father of the twins is found to have blood groups
AB, MN, Ri+ and the mother AB, M, Rh-. This is our evidence.

* If the observations come from a continuous distribution their likeli-
hood is defined as theirj oint probability density.
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Now the probability that onc of the children of such parents
should be a boy with blood groups 4, M, Rh+ 1s the product of
the probabilities of these four events which is 3 x3xix$
=5/112. (The value of  for the probability that the child will
be Rh+ is based on the fact that about 3ths of RA* men are
homozygous and #%th heterozygous for the Rhesus gene;
the required probability is thus & + $x 1 =3%.) Hence the
probability that identical twins will both be male and have
the observed blood groups is 5/112 and the probability that
non-identical twins will both be male and have the observed
blood groups is (5/112)2. These are the likelihoods. Hence
the probability that the twins are identical is proportional
to 1/3x5/112 and the probability that they are not identical
is proportional to 2/3x(5/112)2. The ratio of these two
probabilities is 112:10 and so, since they must add up to I,
the probability that the twins are identical is 112/122 = -92
and the probability that they are not identical is 10/122 = -08.
These are the posterior probabilities. They mean that, if we
had a large number of malc twin births in which both the
parents and the twins had the observed blood groups, about
92 per cent of the twins would be identical and 8 per cent
non-identical.

It is clear that this sort of probability statement is much more
direct and satisfactory than the inferences which can be drawn
from the construction of a significance test or a confidence
interval. Unfortunately the occasions on which the prior
probabilities of the possible hypotheses are known ecxactly
in a frequency sense are rare. When they are not known we
must either try to guess them, in which case our posterior
probabilities will be wrong when we guess wrong, or we must
abandon the attempt to restrict ourselves to statistical prob-
abilities and introduce prior probabilities as inductive prob-
abilities expressing the degree of belief which it is reasonable to
place in the hypotheses hefore the evidence has been collected;
in this case the likelihvod will still be a statistical probability
but the posterior probability will be an inductive probability.
It is the second course which is usually adopted by the advocates
of Bayesian methods.

The problem which Bayes himself considered was the
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following. Suppose that some event has an unknown proba-
bility, P, of occurring and that in 7 trials it has occurred x
times and failed to occur n—x times. What is the probability
that P lies between two fixed values, a and 5? Bayes first notes
that the probability of the event occurring x times in 7 trials
is the binomial probability

1
_" _ pr1-P)* .
xl(n—x)!
This is the likelihood. He then remarks that if nothing was
known about P before the experiment was done it is reasonable
to suppose that it was equally likely to lie in any equal interval;
hence the probability that P lay in a small interval of length
dP was initially dP and so the joint probability that it lay in
this interval and that the event occurs x times out of 7 is
!
_™  pr(1—P)"=dP.
xYn—x)!
The posterior probability that P lies between a and b is thus
proportional to the integral of this expression from a to b
and is equal to jb

a

P(1—P)**dP

jl P*(1—P)"~%dP
0
(The factor n!/x!(n—x)! occurs in top and bottom and so
cancels out.) This probability can be found from tables of the
incomplete B function; it is closely related to the cumulative
probability function of the F distribution. (cf. Problem 8.8).
This argument depends on the assumption of a uniform
prior distribution of P; this prior distribution must be inter-
preted as a rational degree of belief. Bayes himself was aware
of the difficulties of this approach, which have been discussed
in Chapter 1. It is worth quoting from the accompanying
letter which his friend Richard Price sent to the Royal Society.
Price writes:

I now send you an essay which I have found among the
papers of our deceased friend Mr Bayes. ... Inan introduction
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which he has writ to this Essay, he says that his design at first
in thinking on the subject of it, was to find out a method by
which we might judge concerning the probability that an
event has to happen, in given circumstances, upon supposition
that we know nothing concerning it but that, under the same
circumstances, it has happened a certain number of times,
and failed a certain other number of times. He adds, that he
soon perceived that it would not be very difficult to do this,
provided some rule could be found according to which we
ought to estimate the chance that the probability for the
happening of an event perfectly unknown, should lie between
any two named degrees of probability, antecedently to any
experiments made about it; and that it appeared to him
that the rule must be to suppose the chance the same that it
should lie between any two equidifferent degrees ; which
if it were allowed, all the rest might be easily calculated in
the common method of proceeding in the doctrine of chances.
Accordingly, I find among his papers a very ingenious solution
of this problem in this way. But he afterwards considered
that the postulate on which he had argued might not perhaps
be looked upon by all as reasonable ; and therefore he chose
to lay down in another form the proposition in which he
thought the solution of the problem is contained, and in a
scholium to subjoin the reasons why he thought so, rather
than to take into his mathematical reasoning anything that
might admit dispute. This, you will observe, is the method
which he has pursued in this essay.

Many modern statisticians share Bayes’s doubts about
the possibility of expressing the prior probability quantitatively
in situations where it does not have a direct frequency inter-
pretation, and in consequence reject the Bayesian method
as a general method of statistical inference. There is, however,
a school of thought which advocates with vigour the use of
Bayesian methods. Perhaps the clearest exposition of their
views is to be found in Sir Harold Jeffreys’s book Theory of
Probability, which we shall now consider.

Jeffreys adopts the extreme view of maintaining that
rational degree of belief is the only valid concept of probability.
However, if the arguments considered in the first chapter of
this book are accepted, it follows that the likelihood must have
a frequency interpretation since it is the probability with which
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the observed event is predicted to occur by some hypothesis.
I shall therefore modify Jeffreys’s treatment by supposing
that the likelihoods are statistical probabilities, but that the
prior probabilities, and in consequence the posterior prob-
abilities, are inductive probabilities.

Jefireys recognises two sorts of statistical problem which
lead to interval estimates and significance tests respectively,
although of course the interpretation of these terms is not the
same as in ‘orthodox’ statistical inference. His interval
estimates are exactly the same as those of Bayes and depend on
the assignment of a prior distribution to the parameter or
parameters being estimated. This prior distribution will
nearly always be a continuous distribution and the posterior
probability that the paramecter has exactly some specified
value will in consequence be zero; non-zero posterior prob-
abilities are only attached to intervals within which the
parameter may lie. In a significance test, on the other hand,
Jeffreys assigns half the prior probability to the null hypothesis
and distributes the rest of the prior probability in some manner
among the alternative hypotheses. He justifies this procedure
by Occam’s razor which implies that a simple hypothesis
is a priori more likely than a complicated hypothesis; the
null hypothesis will usually be simpler than the alternatives
to it.

For example, if we want to test the hypothesis that the
probability, P, of some event has the value Py, we assign the
prior probability 4 to the hypothesis that P = Py and the
probability {dP to the hypothesis that P lies in a small interval
of length dP not containing P,. If the event has occurred x
times and failed to occur n—x times in #z trials, the likelihood
1s the usual binomial probability and so the posterior proba-
bility that P = P, is proportional to

. n!

: xl(n—=x)!
and the posterior probability that P is not cqual to Py is
proportional to

n!

Py(L —Po)—

1
* xl(n—x)!

1 n!
0

(n+1)1
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The posterior probability of the null hypothesis is therefore

(n+1) IPE(1 —Py)"~*

(n-+1)1PZ(1 —Po)"~*+x(n—x) !

Thus if we throw a coin ten times and obtain 4 heads and 6
tails, the probability that the coin is unbiased, that is to say
that P =}, is

! %) 10

BERLLC)
IT1(3)10+ 416!

and the probability that the coin is biased is -31. It should
be noticed that these statements are much stronger than the
inferences from an orthodox significance test, which do not
allow us to talk about the probability of the null hypothesis
being true or false.

As a second example let us consider Jeffreys’s treatment of
the ¢ test. If x;, x5, ..., %z are observations drawn from a

normal distribution with mean g and variance o2, their joint
likelihood is

L= (2r) "o " exp—34 Y (% —p)?/02.

Jeffreys now assigns a uniform prior distribution to g, which
can take any value between —oo0 and + oo, and a uniform
prior distribution to log ¢ which means that the prior prob-
ability that o will fall in a small range of length do is do/o since
dlog o/do = 1/o. His justification for the latter step is that
log o can take any value between —oo and +-co, whereas ¢
is restricted to positive values; it also has the advantage that
o2 or 1/¢ or any other power of ¢ has the same prior distri-
bution since log ¢* = k log o, whereas this is not true for a
uniform prior distribution of o.

The posterior probability that p lies in a small interval du
and that o lies in a small interval do is thus proportional to
Ldudo/s. The posterior probability that p lies in the small
interval du irrespective of the value of o is therefore propor-

tional to du j N (L/o)do from which it follows (see Problem 10.3)
0
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that )
(b —7)

s/\/;l

follows the ¢ distribution with n—1 degrees-of free(‘iom. It
should, however, be remembered that s the- .ran(.iom
variable > and that ¥ and s are constants this distribution;
this is the exact reverse of the orthodox approach. The ortho-
dox confidence intervals for p are thus re-interpreted by Jeﬁ?e_ys
as intervals within which p has a known (inductive) probability
ng.

Of})nelcgnclusion, it must be admitted that Bayf:sian rr.lethods
are very attractive and answer the sort of question which one
wants to ask. Many statisticians, however, have been unable
to accept the prior distributions upon which they (.iepend.
One cannot, of course, deny that prior prob?b}htles, in some
sense, exist and that some hypotheses arc a priont less plausible,
and require stronger proof, than others; this is the reason wh_y
more stringent significance levels must be employed in experi-
ments on extra-sensory perception than in more generally
accepted scientific fields. The difficulty lies 1n assessing th'ese
prior probabilities numerically. Nevertheless, the Bayesian
approach is becoming more widely used.

FpuciAL INFERENCE

The method of fiducial inference, which was proposed })y
Sir Ronald Fisher in 1930, purports to make dircct_pr(_)bal')ihty
statements about parameters without using prior dlstmbutlo-ns;
it is thus an attempt to obtain the advantages of Bayesian
methods without their arbitrary assumptions. Unfortunately.f,
Fisher never gave a completely satisfactory account of his
method, which seems to many statisticians to be'based on a
logical fallacy. Fisher was, however, a man of genius and even
his mistakes are likely to prove interesting; his method is
worth studying for this reason alone. . .

1 shall begin by outlining Fisher’s argument, relyl.ng m‘amly
on an expository paper which he wrote in 1935 entitled ¢ The
fiducial argument in statistical inference . Fisher first remarks
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that if a sample of size n has been drawn from a normal distri-
bution, then the quantity

(F—)

s/Vn
follows a ¢ distribution with n—1 degrees of freedom, If ¢p
is the upper 100P per cent point of the ¢ distribution, the prob-

ability that this quantity will be less than ¢p is therefore P.
But the inequality

(F—p) <tp
s|v/n
is equivalent to the inequality

p = F—stp/V n.
Fisher therefore argues that, for fixed values of # and s, the
probability that the latter inequality will be true is also P.
It will be noticed that u is now the ‘ random variable ’> while
% and 5 are fixed constants. By considering different values
of tp the probability that p 1s greater than an assigned value
can be determined; this procedure will therefore generate a
probability distribution for p, which Fisher calls the fiducial
distribution of u. This distribution can be used to construct a
fiducial interval for p, that is to say an interval within which p
has a high fiducial probability, such as -95, of lying. This
interval will be numerically identical with the corresponding
confidence interval, although its interpretation is different
since in the theory of confidence intervals p is notregarded as a
random variable known to have a high probability of lying
in a fixed interval but as an unknown constant having a high
probability of being contained in a random interval.

At the end of his 1935 paper Fisher applied the fiducial
argument to the problem of comparing the means of two
independent samples from normal populations whose variances
cannot be assumed equal. (This problem had already been
considered by Behrens and is often called the Behrens-Fisher
problem.) The construction of a significance test in these
circumstances presents considerable difficulties, as we saw in
the last chapter. TFisher’s solution is very simple. For if uy
and u, are the means of the two populations, the fiducial
distributions of these two parameters can be obtained as in
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the foregoing paragraph and the fiducial distribution of
3 = py—py can then be derived by the ordinary methods for
finding the distribution of the differcnce between two inde-
pendent random variables. This distribution can then be
used to construct a fiducial interval for & and to test the hypo-
thesis that § = 0 in the same way as a significance test is
obtained from a confidence interval. Tables for performing
this test are given in Fisher and Yates’ Statistical Tables.

Unfortunately this test is not a significance test in the
normal sense of the word, since the probability of rejecting
the hypothesis that 8 == 0 if this hypothesis is true, is not equal
to the level of significance specified in the tables. In the
extreme case in which both samples are of only two observa-
tions each, and when the means and the variances of the two
populations are in fact equal, Fisher (1956, p. 96) has calcu-
lated that his 5 per cent fiducial criterion will be exceeded
in less than 1 per cent of random trials. Fisher states that this
circumstance caused him no surprise and that it was indeed
to be expected, but it has convinced many statisticians that
there is a fallacy in the fiducial argument.

To see where this fallacy may lie let us return to the original
situation in which n observations have been made on a normal
random variable with mean p. What meaning can we attri-
bute to the statement that there is a fiducial probability, P,
that p is greater than %—stp/4/n? If ¥ and s are regarded as
random variables which take different values in different
samples, this statement has a direct frequency interpretation;
in repeated sampling from the same population the statement
will be true in a proportion, P, of the samples. However,
in a particular sample, for which ¥ and s are known, the state-
ment is either true or false, although we do not know which,
and probability statements, in the statistical sense, have no
meaning. If fiducial probability is meaningful it must there-
fore be an inductive probability.

We saw in the first chapter that it is difficult to assign
numerical values to inductive probabilities. There is, however,
one situation in which this can be done. Suppose that we know
that a coin is unbiased, that is to say that the statistical prob-
ability of heads is %; if we toss the coin and cover it before
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looking at it there is clearly an inductive probability of } that it
is a head. Similarly, if we construct a 95 per cent confidence
interval for pn, then we know that the probability that this
random interval contains . is -95; there is therefore aninductive
probability of ‘95 that p lies in a particular interval chosen
at random from all such intervals.

To justify this argument it is essential that the interval should
have been chosen at random from the whole population of
intervals of which 95 per cent are known to contain 4. Suppose
for example that we have made 9 observations and that £ = 5-2
and s = 3-5; then the 95 per cent confidence interval for y is
52427, that is to say from 25 to 7-9. This interval is an
interval chosen at random from an infinite population of
intervals of which 95 per cent contain p and there is therefore
an inductive probability of -95 that p lies in this interval. But if
we select from the infinite population the intervals from 2-5 to
7-9, there is not the slightest reason to suppose that 95 per cent
of these intervals will contain . It might be, for example,
that in Nature p was always 0, in which case the interval
2-5 to 79 would never be right, although of course it would
sometimes occur; or it might be that x was always 4, in which
case this particular interval would always be right; or it
might be that x was 0 half of the time and 4 the rest of the
time, in which case this interval would be right half of the
time.

If, therefore, we were to announce before doing the experi-
ment that we intended to use the interval 2-5 to 79 as a
‘ confidence interval’ for u, but that the level of ‘ confidence ’
would depend on the actual values of £ and s observed, there
would not necessarily be a statistical probability of -95 that p
would be contained in this interval on those occasions on which
the level of ‘ confidence * was 95 and we should not be justified
in assigning an inductive probability of -95 to the statement that
p lies in this interval on these occasions. It follows that fiducial
probability distributions cannot be treated as if they were
ordinary probability distributions. It seems to me that this is
the error into which Fisher has fallen in compounding the
fiducial distributions of p; and p, by the ordinary rules to
find the fiducial distribution of 8 = p; —u,.
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StaTisTiIcAL DECISION THEORY

We shall finally consider a system of statistical inference
which is fashionable in America but has not yet gained much
favour on this side of the Atlantic. The basic tenet of this
school of thought is that statistical inference is concerned not
with what to believe in the face of inconclusive evidence but
with what action to take under these circumstances. This idea
was first put forward by the American mathematician Abraham
Wald in 1939 and was expanded in 1950 in his book, Statistical
Decision Functions. Wald’s work is of considerable mathematical
difficulty and I shall therefore try in this section to describe
the essentials of his theory stripped of its mathematical
details.

To understand statistical decision theory it is necessary to
know something about the mathematical theory of games out
of which it has developed. As an example let us consider the
game of two-finger Morra. This game is played by two people,
each of whom shows one or two fingers and simultancously
calls his guess as to the number of fingers his opponent will
show. If only one player guesses correctly, he wins an amount
equal to the sum of the fingers shown by himself and his
opponent; otherwise the game is a draw. If by [1 2] we indi-
cate that a player shows one finger and guesses that his opponent
will show two fingers, then the game can be set out in a table
as follows:

Player B
[rip [r2] [21)  [22]
[11] 0 2 —3 0
Player A (raj =2 0 0 3
(2 1] 3 0 0 —4
[22] 0 —3 4 0

The figures in the body of the table represent A’s gain which
is of course B’s loss.

The question is, how ought A to play this game? Let us
first suppose that he must always play the same strategy, and
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that he has only to decide which of the four strategies it is to be.
He would then argue as follows:

“If I always play the strategy [1 1], then B will eventually
realise that I always show one finger and guess one finger
and will therefore himself always show two fingers and guess
one finger ; he will therefore gain 3 points each game. If I
always adopt strategy [12] then B will eventually always
play {1 1] and will gain 2 points per game. Likewise, if I
always play [2 1] B will eventually gain 4 points, and if I
always play [2 2] he will eventually gain 3 points per game.
Hence if I must choose a single strategy for all time the best
one to adopt is [1 2] since I shall then only lose 2 points per
game, whereas with any of the others I should lose more.”

[12] is called A’s mimimax strategy since it minimises his
maximum Joss.

Player A can, however, do better than this if he changes his
strategy from game to game in order to keep B guessing. In-
stead of choosing from the four a single strategy to which he
adheres in all subsequent games he therefore assigns a prob-
ability to each of the four strategies, and at each game chooses
a strategy by an appropriate random device. In deciding
what probabilities to allot to the strategies he argues, as before,
that his opponent will eventually discover what probabilities
he is using and will react by choosing for himself the strategy
which will maximise A’s loss; A must therefore select those
probabilities which minimise his maximum loss. It turns out
that A must use only the strategies [12] and [21], and
that if we write P and Q == 1 —P for the probabilities assigned
to these two strategies, then Q /P must be between £ and §.
If A adopts this strategy, then B cannot do better than do
the same, in which case neither player wins any points at any
game. If Q/P were less than 2 then B could penalise A by
playing [11]; if Q /P were greater than £ B could penalise
A by playing [2 2]; and if A ever played either [1 1] or [2 2]
B could penalise him by playing [1 2] and [2 1] with the
appropriate frequencies. For a fuller account of the theory
of games the reader is referred to Williams (1954) or McKinsey
(1952).

Wald’s theory of statistical decision is based on the idea that




182 PRINCIPLES OF STATISTICS

science can be regarded as a similar game between Nature
and the experimenter. Let us consider an example from

everyday life discussed in The Foundations of Statistics by L. J.
Savage:

Your wife has just broken five good eggs into a bowl when
you come in and volunteer to finish making the omelet. A
sixth egg, which for some reason must either be used for the
omelet or wasted altogether, lies unbroken beside the bowl.
You must decide what to do with this unbroken egg. Perhaps
it is not too great an over-simplification to say that you must
decide among three acts only, namely, to break it into the
bowl containing the other five, to break it into a saucer for
inspection, or to throw it away without inspection. Depend-
ing on the state of the egg, cach of these three acts will have
some consequence of concern to you, say that indicated below:

State of egg

v
~ aY

Act Good Rotten

Break into bowl Six-egg omelet No omelet, and five good
eggs destroyed

Break into saucer  Six-egg omelet, and Five-egg omelet, and a

saucer to wash saucer to wash
Throw away Five-egg omelet, Five-egg omelet

and one good egg

destroyed

Before you can decide on a course of action you must assign
utilities to these six consequences. This is bound to be rather
arbitrary, but let us suppose that a six-egg omelet is worth
6 points and a five-egg omelet 5 points; let us also suppose
that a saucer to wash is worth —1 point and that each good egg
destroyed costs you 2 points because of the reproaches of your
wife. The utility table is then as follows:

Good egg Rotten egg

Break into bowl 6 -—10
Break into saucer 5 4
Throw away 3 5

\_ : 
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If from past experience you knew the probability that the
egg would be rotten it would seem reasonable to choose that
act which maximised your expected utility; for example,
if you knew that 10 per cent of eggs were rotten and 90 per cent
good, then the expected utility of breaking it into the bowl
is ‘9X6—-1x10 =4-4; that of breaking it into the saucer
is 49 and that of throwing it away 3-2. You should therefore
break it into the saucer.

Suppose, however, that you do not have reliable information
about the frequency of rotten eggs. If you were a Bayesian
you would try to assign some reasonable prior probabilities
to the two states of the egg and then act as if these were the
known frequency probabilities. The decision theory approach
is to regard this situation as a game against Nature and to
adopt the strategy which will minimise your maximum loss.
Wald states his position as follows: ° The analogy between the
decision problem and a two-person game seems to be complete,
except for one point. Whereas the experimenter wishes to
minimise the risk, we can hardly say that Nature wishes to
maximise it. Nevertheless, since Nature’s choice is unknown
to the experimenter, it is perhaps not unreasonable for the
experimenter to behave as if Nature wanted to maximise the
risk.” It turns out that your best strategy is never to break
the egg into the bowl, to break it into a saucer two-thirds of the
times, and to throw it away on the remaining occasions;
Nature’s best strategy is to make a third of the eggs good
and two-thirds rotten. If you both adopt these strategies,
then your average gain will be 4}. If you adopt any other
strategy then you cannot be sure of gaining as much as
this and Nature can ensure that you make less; if Nature
adopts any other strategy, you can make sure of gaining more
than 41,

Let us now consider a very simple statistical application
of the theory of games. You are told that a certain coin has a
probability of either { or } of coming up heads; you are
allowed to toss the coin twice and must then decide what the
probability is. If you are right, you gain 1 point; if you are
wrong, you gain no points. In this decision problem you have
six possible pure strategies which are listed below together
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with your expected gain under the two hypotheses about the
coin:
Expected gain

State that — ~
— —A ~ when when
Strategy P =1} P=3 P=1 P =3
1 Never Always 0 1
2 ifx =0 ifx =1lor2 9/16 3/4
3 ifx=0o0rl ifx=2 16/16 1/4
4 Always Never 1 0
5 ifx =1 ifx = 0or2 6/16 1/2
6 fx=00r2 ifx=1 10/16 1/2

Treating this problem as a game against Nature, we find that
Nature’s best strategy is to choose P = } with a probability
of 8/14 and P =} with a probability of 6/14. Your best
strategy is to use strategies 2 and 3 with relative frequencies
of 11:3; that is to say, you state that P = } when there are
no heads, P = 1 when there are 2 heads and when there is
1 head you employ a chance device 50 as to have a probability
of 3/14 of stating that P =} and a probability of 11/14 of
stating that P =34. 1If you use this mixed strategy and
Nature uses her best strategy your expected gain, which is also
your probability of being correct, is 9/14. No other strategy
can ensure you as high an expected gain as this.

These ideas can be extended to more complicated situations;
for details the reader is referred to the books of Chernoff and
Moses (1959), Blackwell and Girshick (1954) and Wald (1950),
which are in increasing order of difficulty. There are two
reasons why this approach has not found favour among British
statisticians.  First, although some statistical problems in
industry and applied science can be naturally formulated as
decision problems, it seems artificial to regard the formulation
and testing of hypotheses in the natural sciences in the same
way. Secondly, there seems no valid reason for regarding
such a decision problem as a game against Nature, since this
amounts to the belief that this world is the worst of all possible
worlds. Statistical decision theory gives rise to many interesting
mathematical problems but it seems to many statisticians that
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its mathematical interest is greater than its practical value.
However, this remark could have been made in their early
days (?f many branches of mathematics which later proved to
have important applications. It remains to be seen whether
this will be true of statistical decision theory.

Exercises

ro.1. Use the data in Table 3 on p. 18 to find a 95 per cent confidence
interval for the probability of throwing a six with the white die.

10.2. Use the da.ta i'n Table 2 on p. 13 to find 95 per cent confidence
limits (a) for the stillbirth rate in males, (6) for the stillbirth rate in females,
(¢} for the sex difference in the stillbirth rate. [In (¢), estimate the variance

of py—p, as bty + 82—2“]
. n

g

10.3. Fu.ld a.95 per cent confidence interval for the mean of the distribution
of h.tter size In rats given in Table 8 on p. 29. [Use the normal approxi-
mation. The observed mean and variance have been calculated on p. 46
and in Exercise 4.3. respectively.]

10.4. In a haemocytometer (see p. 93) each square has sides of length
:05 mm and thickness of -01 mm. Suppose that a suspension of cells is
11‘1tr0duced into the haemocytometer and that counts over 20 squares
give a mean value of 5-2 cells per square. Find a 95 per cent confidence
mterva! for the number of cells per c.c. in the suspension. [Use the normal
approximation and estimate the variance of the distribution of cell counts
from its mean.]

10.5. Use the data in Table 19 on p. 149 1o find 95 per cent confidence
intervals f'or the average number of hours’ slcep gained by the use of (a)
hyoscyamine, (5) hyoscine, and (¢) for the superiority of the latter over
the former drug.

10.6. Use the same data to find a 95 per cent confidence interval for the
standard deviation of the distribution of the number of hours’ sleep gained
by the use of hyoscine. [Use the fact that §2/o2 follows a x? distribution
with 9 degrees of freedom to find a confidence interval for o2 and hence
for ¢. See p. 195.]

10.7. Use the data in Table 22 on p. 210 to find 95 per cent confidence
intervals (a) for the increase in comb-growth in capons receiving 4 mg
androsterone, (4) for the difference in comb-growth between capons
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receiving 4 mg and 8 mg. [Cf. Exercise 9.5. In (b) note that, if the variance
at the two dose levels is the same, then, in the notation of p. 150,

E=g~ (= pa)

s 1 1
i

follows the ¢ distribution with m-tn—2 degrees of freedom.]

10.8.  Supposc that a purple-flowered variety of pea is crossed with a
white-flowered variety, that the resulting hybrid is allowed to self-fertilise
and that one of the purple-flowered plants in the second generation, which
may be either PP or Pp, is again allowed to self-fertilise and produces 10
third-generation plants which all have purple flowers. What is the
probability that the second-generation plant is PP and will therefore

always breed true? [Sce pp. 22-25 for the genetic background to this
question. ]

Problems

10.1. Supposc that g and b are normally distributed, unbiased estimators
of two parameters « and B with variance ¢,0? and c,0? respectively and
with covariance ¢z0?, where ¢, €2 and ¢y are known constants; and suppose
that 52 is an estimate of o? such that Js?la® is distributed as X[zf] indepen-
dently of @ and b. To construct an exact confidence interval for p = /B,
find the mean and variance of g— pb and hence find a quadratic equation
whose solution will give the required interval. This method is due to
Iieller; an approximate confidence interval can be found by considering
the approximate formula for the mean and variance of ¢/b in Problem 5.7.

Use the data in Table 22 on p- 210 to find a 95 per cent confidence
interval for the ratio of the comb-growth in capons receiving 8 mg andro-
sterone compared with those receiving 1 mg, ignoring the rest of the data.

10.2. Laplace’s law of succession states that, if an event has occurred m
times and failed to occur n—m times in 2 trials, then the probability that
it will occur at the next trial is (m—+1)/(n+2). This result is obtained
by supposing that P has a uniform prior distribution between 0 and 1, so0
that its posterior distribution given m successes in 7 trials is

S(P) = “Pi(lfi))n;m_h

1
Pm(1 — P)n-mgp

0
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It is then argued that the probability that the event will occur at the next
trial is

J " pr (P)dP.

0

Fill in the mathematical detail of the argument and examine its logical
structure,

10.3. In Jeflreys’ treatment of the ¢ test (p. 175) show that

f (Lfo)do 3™ Dmy - (u—st)2) =40
0

and hence show that
=9
s/ \/;

follows the ¢ distribution with n— 1 degrees of freedom.
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POINT ESTIMATION

A point estimate of a parameter is a single figure, based on
the observations, which is intended to be as near the true
value of the parameter as possible. For example, the pro-
portion of successes in a series of trials is the obvious estimate
of the true probability of success. A point estimate is of
course a random variable and it is highly unlikely that it will
be exactly equal to the parameter which it estimates. In order
to make any use of a point estimate it is therefore necessary
to know something about its sampling distribution, and in
particular about its variance. This information can then be
used to construct a confidence interval, that is to say a range of
values which has a known probability of containing the true
value of the parameter. Thus a point estimate is of little
value except as a starting point from which a confidence
interval can be constructed. There is, in theory, no reason
why confidence intervals should not be constructed without
any reference to point estimates, but in practice the simplest
procedure is to find a good point estimate of a parameter
and then try to build up a confidence interval around it.
This fact largely explains the importance of the theory of point
estimation.

It is useful to distinguish between an estimation formula,
or estimator, and an estimale, which is the value taken by the
estimator on a particular occasion. For example, if x stands
for the number of successes in MV trials, then x//N is an estimator
of P, the probability of success; if in a particular experiment
x =40 and N = 100, then -4 is the corresponding estimate
of P. An estimator is thus a random variable and an estimate
is a single observation on it. A ‘ good ’ estimator is one whose
sampling distribution is concentrated as closely as possible about
the parameter which it estimates. The rest of this chapter
will be devoted to a discussion of what exactly this phrase
means and how such estimators can be found. We shall

188
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begin by considering why the sample mean rather than the
median is usually taken as an estimator of the population
mean.

THE MEeaN v. THE MEDIAN

Suppose that n observations have been made on a random
variable whose mean, u, we wish to estimate. We shall denote
the median of the distribution by j; and we shall write m
and 7 for the mean and the median of the observations. Why
should we choose m rather than s as an estimator of 1? In
some samples m will be nearer g than A and in others the
contrary will be true, but there is no way of telling which in
any particular sample. We can, however, ask which of them
is more likely to be close to the true value. This question
therefore demands a comparison of the sampling distributions
of m and .

Let us first suppose that the underlying distribution is
asymmetrical so that 7 # p. We know that E(m) = p and
V(m) = o2/n. Hence, provided that ¢2 is finite, V(m) will
tend to zero as the number of observations increases and so
the sampling distribution of m will be concentrated more and
more closely about p; m is said to be a consistent estimator
of u. Similarly it is intuitively clear that the sampling distri-
bution of 7 will cluster more and more closely about /i as the
sample size increases; m is therefore a consistent estimator of
fi. However,  is not a consistent estimator of u since 7 7 p.
Any reasonable estimator of a parameter should be consistent
since we expect it to become clustered more and more closely
about that parameter as the number of observations increases;
indeed this was how the value of the parameter was defined
in Chapter 4. We conclude that / is not an acceptable
estimator of p unless p = f.

Let us now suppose that the underlying distribution is
symmetrical so that both m and A are consistent estimators
of u. Itis clear that the sampling distributions of both these
estimators are symmetrical about p = ji. The variance
of m is o2/n and its distribution tends to the normal form in
large samples. We shall now show that in large samples @
is nearly normally distributed with a variance approximately
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cqual to 1/[4nf2(f)] where f(f) is the value of the probability
density function at . For if the number of observations is
large, the density of observations (that is, the number of
observations per unit of measurement) in the neighbourhood
of ji will be approximately nf(f). Hence the distance between
two successive, ranked observations in this neighbourhood
will be approximately 1/nf(7). Now the number of observa-
tions greater than g follows the binomial distribution with
P =1 and is therefore approximately normally distributed
with mean }n and variance z; and when x observations
are greater than ji, the distance between A and [J is nearly
(x—3%n)/nf(fi). It follows that 7 is approximately normally
distributed with mean f and variance

in _ 1
[of (D)2 4nf2(j)

It the underlying distribution is normal f(f) =_f(p)
= 1/0V/27 = 4/, so that the asymptotic variance of m is
1-5702/n. In large samples, therefore, the sampling distri-
butions of m and # differ only in their variances, the variance
of m being 1-57 times the variance of m. The sample median
is thus more variable and is thercfore a worse estimator of
p than the sample mean. The ratio of the variances of m
and 7, multiplied by 100, is called the efficiency of M compared
with m. The comparative efficiency of the median is therefore

Vim) o2fn 100
100 x Vi) 100 % (5702 157 64 per cent.
The same accuracy can be obtained by collecting 64 observa-
tions and computing their mean as by collecting 100
observations and computing their median. (This is true because
both sampling variances are inversely proportional to the
number of observations.) By using the sample median instead
of the mean we have in effect wasted 36 per cent of the
observations.

If the underlying distribution is not normal the asymptotic
variance of M will alter. If the distribution is platykurtic
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(flat-topped), f(#) will be less than -4/6 and the variance of
M will be greater than 1-57¢2/n; if, however, the distribution
is leptokurtic (with a high peak), f(i) will be greater than
“4/a and so the variance of 7 will be less than 1-57¢2/n, and
may become less than o2/n which is the variance of m irre-
spective of the shape of the distribution. The median may thus
be more efficient than the mean in samples from a leptokurtic
distribution. The reason for this is that a leptokurtic curve
has a higher proportion of extreme observations than a normal
curve with the same variance, and that the mean is more
affected than the median by the occurrence of an extreme
observation.

As an extreme example, consider the Cauchy distribution
whose density function is

b

IO = s

— 00 < X< 0.

This is the distribution which would be obtained if a machine
gun at a distance b from an infinitely long wall and opposite
the point u on the wall were fired at it in such a way that the
horizontal angle of fire was equally likely to lie in any direction
(see Problem 3.4). If we put 4 = 1, u = 0, it is the ¢ distri-
bution with 1 degree of freedom. The tail of this distribution
stretches out so far that its variance is infinite. The central
limit theorem does not in consequence apply, and in fact the
mean of n observations from this distribution has exactly the
same distribution as a single observation (see Problem 7.5);
it is thus a waste of time to take more than one observation if
the sample mean is going to be used as an estimator of u. The
mean is not even a consistent estimator of p. The sample
median is much better behaved, and tends in large samples
to be approximately normally distributed with mean p and
variance #2h2/4n.

We have seen that if the underlying distribution is normal
the sample mean is a more efficient estimator of 1 than the
median. It is natural to ask whether there exists a more
efficient estimator than the mean. This question can be
answered by a remarkable theorem due to Fisher which states
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that the variance of an unbiased estimator of a parameter 6
cannot be less than

S S
E (51'_2 log L)
do2
where L is the likelihood of the observations. An unbiased
estimator of @ is one whose Expected value is equal to 6.
The likelihood of a set of observations is their joint probability
of occurrence if they come from a discrete distribution and
their joint probability density if they come from a continuous
distribution. This theorem is proved in the Appendix to this
chapter.
If x;, x5, ..., %x are observations from a normal distribution

with mean . and variance o? their likelihood 1s

L = (2m02) 4" exp —3Y(xs—p)2/0?

so that
dlog L , XX np
d‘Ua "—Z(Xi-—{,b)/o' - ;_2‘ - ;2
d2log L _ —ajo?
du?
ZEW I8 L)
dp?

Hence the variance of an unbiased estimator of p cannot be
less than ¢2/n. If we restrict our choice to unbiased estimators
and use their efficiency as a measure of their ‘goodness’,
we cannot find a better estimator than the sample mean whose
variance is exactly o2/n.

The use of efficiency as a measure of the ‘ goodness’ of an
estimator suffers from two drawbacks. First, it can only be
used for comparing unbiased estimators since the variance
of an estimator, ¢, is the mean of the squared deviations from
the Expected value of the estimator, E(t); this can only be
regarded as a measure of the scatter of the estimator about the
parameter, 0, which it estimates if E(f) = 6. We. shall see
in the next section that a biased estimator may be acceptable
if its sampling distribution is skew. Second, the variance is
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not the only measure of the scatter of the- distribution which
could be used. Ift?; and ¢, are two estimators of a parameter 6
it is possible that ¢; has a larger variance but, for example,
a smaller mean deviation than #,; under these circumstances
it would clearly be arbitrary to call £, a ‘ better’ estimator
than #.. This situation can only arise if the sampling distri-
butions of the two estimators are different in shape.

In large samples most estimators become approximately
normally distributed so that neither of the above objections
is valid; under these circumstances the most efficient estimator,
that is to say the estimator with the smallest sampling variance,
is without doubt the best estimator. (It is understood that
an estimator with a symmetrical sampling distribution will
be unbiased.) In small samples, however, we may wish to
compare estimators whose sampling distributions are skew
or have different shapes, so that the concept of efficiency is of
less value. We shall see how this can be done in the next
section; the discussion will be centred round the problem
of estimating the variance of a distribution.

ESTIMATION OF THE VARIANCE

If ¢ is an estimator of some parameter 8, it is clear that the
‘centre’ of the sampling distribution of ¢ should be at 8;
otherwise, there would be no sense in saying that  estimated 0.
If the sampling distribution of ¢ is symmetrical, there is only
one possible measure of its centre; for the mean, the median
and the mode coincide at the centre of symmetry. But if its
distribution is skew there is not a unique measure of its centre,
and the choice of a particular measure is to some extent
arbitrary. The choice of an unbiased estimator whose Expected
value is equal to the parameter being estimated amounts to
taking the mean of the distribution as a measure of its centre.

Pjor example, let us consider the problem of estimating the
variance, and let us suppose that the underlying distribution
is normal so that §2/02 follows the x2 distribution with n—1
degrees of freedom. This distribution is skew to the right
and has its mean at n—1, its mode at n—3 and its median

approximately at n—% from the empirical rule that the
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median is about two-thirds of the way between the mode and
the mean. If we want an unbiased estimator of o2 we must
therefore divide the sum of squares by n—1; but if we want
the median of our estimator to be at ¢2 we must divide the
sum of squares by n—3. The mode is not a very sensible
measure of the centre of a distribution, but a case could be
made for dividing $2 by n—3. )

If s2 = 82/(n—1) is taken as an estimator of o2, then it
seems natural to take s as an estimator of o. However, s
is not an unbiased estimator of o because E2(s) # E(s2) as
was explained on p. 69; E(s) is in fact slightly .less than o.
This difficulty is not encountered if the median is used as a
measure of the centre of the distribution. For if half the values
of 5’2 = $§2/(n—3) are less than o2 it immediately follqws
that half the values of s/ are less than ¢, so that the median
of the distribution of s’ is at o. 'This invariance property of
median-unbiased estimators is quite a strong argument in
their favour.

A case can also be made for dividing $2 by zor by n+1. The
‘natural ’ estimator $2/n is also, as we shall see in the next
section, the maximum likelihood estimator of ¢2 and for t'his
reason has quite a strong intuitive appeal. Another attractive
method is to seek the estimator whose mean square error,
that is to say E(t—6)2, is a minimum, on the grounds that
(t—0)2 is a measure of the ‘ badness * of an estima}te. If we are
going to take as our estimator of o2 some fraction of $2, say
S2/k, where k is a constant to be determined, then the Expccte.d
value of $2/k is (n—1)¢2/k and the variance of $2/k about this
Expected value is 2(rn—1)o4/k2 since the variance.of $2/02
is 2(n—1). The mean square error of a biase(.l estimator ¢,
whose Expected value is E(¢) = 045, where b is the bias, is

E(t—6)2 = V(1)+b2

which in this case is

E[‘_S;; _02]2 __2(n—1)o* . (n—1 -—15)3(14.

k2 k2

This quantity is a minimum when £k = n+1.
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There are thus at lcast five constants, ranging from n—3
to n+4-1, whose use as divisors of the sum of squares can be
Justified on different grounds. The construction of a point
estimator for o2 is therefore to some extent arbitrary; but the
difficulty vanishes when we construct an interval estimate
for 02, We know that, if the undcrlying distribution is normal,
$52/02 follows the y2 distribution with n— 1 degrees of freedom,
and there is thus a probability of 95 per cent that this quantity
will lie between the upper and lower 21 per cent points of
this distribution; but this is equivalent to saying that o2
lies between S§2/y2.,; and S$2/x2,.., and if we habitually
make this assertion we shall be correct 95 per cent of the
time. For example, if we have made 15 observations and find
that §2 = 23, then the lower and upper 24 per cent points
of the x2 distribution with 14 degrees of freedom are 5-63 and
26-12, and so the 95 per cent confidence interval for o2 is -88
to 4:09. It should be noticed that no decision about the
appropriate divisor for $2 has had to be made in order to
construct this interval estimate; it has, however, been
assumed that all the information about 2 provided by the
sample is contained in the sum of squares.

In the ¢ test and in the construction of confidence intervals
based on the ¢ distribution, n —1 is used as a divisor of the sum of
squares in order to define . It would, however, make no
difference if some other divisor were used since the distribution
of ¢ would be altered by a corresponding amount. Student in
fact used 7 as the divisor of $2, and his tables of the ¢ distri-
bution are consequently slightly different from the modern
ones; but the numerical answers to which they lead in any
particular case are identical.

The problem of deciding what quantity should be used as a
divisor of the sum of squares is thus a pseudo-problem created
by a preoccupation with point estimation rather than interval
estimation. The important question is: Why should an
estimator of o2 be based on the sum of squares rather than on
some other function of the observations, such as the mean
deviation or the range? The answer to this question lies in

the idea of sufficiency which was developed by R. A. Fisher
in the 1920s.
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An estimator, ¢, of a parameter 6 is said to be a sufficient
estimator if the conditional distribution of the observations
given ¢ is independent of 8. If this is so, no more information
can be squeezed out of the observations once ¢ is known and ¢
therefore contains all the information about 6 which the
observations can provide. Suppose, for example, that n
observations, x;, %3, ..., ¥s, have been made on a Poisson
variate with mean u. Their joint probability of occurrence is
8—nu X

— [
P(xb X2y <oy xn) T T
XpiXpeo Xy

The sum of the observations, Y x;, is a Poisson variate with
mean nu and so its probability of occurrence is

The conditional probability of the observations given their
sum 1s

P(xla X2y veey xn) . (in)'

P(Y x4) xplepti x,!

which does not depend on p. The sum of the observations
is thus a sufficient estimator of p; once it has been calculated,
the original observations can be thrown away since they do
not contain any additional information about the parameter.

If ¢ 15 a sufficient estimator of 6, then so is any monotonic
function of ¢, such as a-}-bt, where a and & are constants;
we should not choose }'x; as the point estimatorof 1 in the above
example, but rather £ =) x;/n, which is also sufficient. The
principle of sufficiency does not produce a unique point
estimator but a class of estimators which are functions of each
other. The choice of a particular point estimator from this
class is to some extent arbitrary. However, we should arrive
at the same confidence interval for the parameter whatever
choice we made. If we are interested in interval estimation
rather than point estimation the principle of sufficiency
answers all our problems.

We now return to the problem of estimating the variance
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of a normal distribution. The joint probability density of the
observations is

f(xl’ X2y -eny xn) = (2770‘2)_*" exp _-% Z(xi;#)z

o2

= (27,-) iR n exp __% I:'SE -+ M].
o2
Furthermore, % is normally distributed with mean p and
variance o2/n and §2/02 is independently distributed as a 2
variate with n—1 degrees of freedom. The joint probability
density function of ¥ and $2 is therefore

S §2) = f(%) X f2(82)

\/n 1 (x'—/u,)Z 52 $2
= exp —ip -/ n—1)—1 ] —_
5 €Xp —3n 2 X ( 2) exp —3 2/[02A(n l)]

[ Vg3 ] . . [s_z n n(f—p)Z]
=|—=—|o " exp —} — L

Vor A(n—1) o2 0?2

The conditional density function of the observations given
% and 82 is f(xy, x2, ..., #,)/f(%, §2), which does not contain
p or o2; that is to say, ¥ and $2 contain all the information
provided by the observations about u and o2, They are said
to be jointly sufficient for p and o2. This is the most powerful
argument we have encountered for using these statistics to
make inferences about the parameters of a normal distribution.
It disposes finally of the suggestion that the sample median
should be used instead of the mean to estimate pu or the mean
deviation instead of the standard deviation to make inferences
about o, unless we are prepared to sacrifice information for
ease of computation or some other reason.

Tae MerHoD or MAxiMuM LikeriHoon

We have considered how different estimators can be com-
pared and what properties are desirable in an estimator, but
no general method of obtaining estimators with these properties
has been described. There is one very general method of
estimation which leads to estimators with a number of desirable
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properties. This is the method of maximum likelihood, which
was developed by R. A. Fisher and which arose naturally out
of his investigations into efficiency and sufficiency.

The likelihood of a set of observations has already been
defined in the discussion of efficiency. The likelihood will
usually depend on one or more unknown parameters which
we wish to estimate. The method of maximum likelihood
consists in taking as our estimators those values of the para-
mcters which maximise the likelihood of the observations.

Suppose, for example, that n observations have been made
on a Poisson variate with mean p. Their likelihood, that is
to say their probability of occurrence, is

e—'"ll,_,):xt
Talxplx,

We could find the value of ¢ which maximises the likelihood
by plotting L against ¢ and obtaining a graphical estimate
of the point where it attains its highest value. However, it
is easier and more accurate to obtain the solution mathemati-
cally. For this purpose it is usually best to consider the
logarithm of the likelihood; since log L is an increasing
function of L it will have a maximum at the same value of p.

Now log L = —np+Y % log p—Y log (x:!).

The position of the maximum can be found by solving the

equation dlog L _ _,H_Z_:f‘j o
dj p
The solution is X

(Itis conventional to denote the maximum likelihood estimator
of a parameter by placing a circumflex over it; the resulting
symbol is read ‘ p hat’.)

For the second example, suppose that n observations have
been made on a normal variate with mean p and variance o2,
The logarithm of the likelihood is

— )2
log L = —inlog 2mo2 — %Z@‘_[_"i
o
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In this case the likelihood is a function of two parameters,
1 and o2, which must be estimated simultancously; we must
thus solve the simultaneous equations

9log L _ 3 (xi—p) _ 0

ou a2
0log L _ z xe—p)? 0
da? 202 204 o

The solution of the first equation is

A

O =X

Substituting this value in the second equation, we find

82 NG = §2/n.

n

This example shows that maximum likelihood estimators are
sometimes biased.

The method of maximum likelihood is thus a very general
method which can be used whenever the likelihood of the
observations can be specified. The resulting equations are
not always as easy to solve as in the above examples; but, if
an explicit solution cannot be found, they can be solved by
an iterative, trial-and-error procedure (see Problem 11.8).
This method of estimation has an obvious intuitive
appeal. It also has the merit of invariance, since it is clear
that if 8 is the maximum likelihood estimator of @ then f(8)
is the maximum likelihood estimator of f(8). But the two
main arguments in its favour are: first that 8 is a sufficient esti-
mator of § if such an estimator exists, and second that in large
samples 0 becomes approximately normally distributed with
Expected value approaching 6 and with variance approaching
the minimum possible variance of any unbiased estimator. The
proof of these very desirable properties is given in the
Appendix to this chapter.

The asymptotic properties of maximum likelihood estimators
not only show that they become fully efficient in large samples
but also enable us to find their approximate sampling distri-
butions when the cxact sampling distributions are intractable.




200 PRINGCIPLES OF STATISTICS

For example, we have already seen that if # observations have
been made on a Poisson variate with mean p then fi =%
Furthermore,

dlog L _ __n_i_;x_f
dp. p
d2log L Yx

du? u2

—F (@gﬁé’) =" since E(xg) = p.
dp? K

We conclude that in large samples fi is approximately normally
distributed with mean p and variance p/n, and we can use this
as the sampling distribution of fi = & provided that n is not too
small. In this case it happens that the mean and variance
found by this method are exact, but this will not be true in
general. It is explained in the Appendix how this method
can be extended when two or more parameters are estimated
simultaneously.

The method of maximum likelihood therefore leads to
estimators which are sufficient and, in large samples, fully
efficient and whose approximate sampling distributions can
be easily found. It undoubtedly deserves the important place
which it enjoys in statistical theory.

APPENDIX

The properties of maximum likelihood estimalors

We shall assume that z observations have been made on a
continuous random variable whose density function, f(x, 6),
contains only one unknown parameter, 6. The discrete
case can be dealt with simply by substituting the probability
function, P(x, 6), for f(x, 0) in the proofs. The extension to
more than one parameter will be considered later. We first
prove that maximum likelihood estimators are sufficient.

The likelihood of the observations is

L = f(x1, 0) . f(x2, ). f (x5 6)-

If ¢ is an estimator of 8 with density function g(¢, 8) and if
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h_(xl, X5 wees X ) is the conditional probability of the observa-
tions given ¢, the likelihood can, by the law of multiplication,
be written in the alternative form

L = g(t, O)h(x1, x2, ..., s 8).
If, furthermore, ¢ is a sufficient estimator of 8, & will not depend

on ¢ and so
iL _dg(t, 0) i)
d6 49 b T

ab
is therefore the same as that of the equation
dg(t, 9)
b i 0
d6

and so Q must be a function of £. Hence if a sufficient estimator
exists, 0 i1s a function of that estimator and is therefore itself
sufficient. It follows in a similar way that if ¢, &, ..., f; are
joint sufficient estimators of the parameters 6y, 65, ..., @,
then the maximum likelihood estimators of these parameters
are functions only of ¢y, ..., ¢, and arc thus themselves jointly
sufficient,

We shall now investigate the sampling distribution of 0.

To do this we shall first consider the sampling distribution of
dlog L

, where it 1s understood that the differential is cvaluated

do
at the true value of 8. We shall in fact show (1) that the
dl .
expected value of — ogL is 0, (2) that its variance is

E (d2log L)

d6?
mately normally distributed. To. illustrate these results,
consider the Poisson distribution for which

d wo

, and (3) that in large samples it is approxi-
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Y% is a Poisson variate with mean nu. The expression on
the right-hand side becomcs approximately normal as z becomes
large, its Expected value is

n
—nt+ =0
‘U,
and its variance is

nwonm
p:op
which is equal to

dp? 2 o

It 1s clear that q_’log L

is a random variable since it is a

function of the random variables %y, ..., x,. Its distribution
tends to the normal distribution in large samples since it is
the sum of » independent variables,

dlog L _ g:‘ d log f (x4, 0)
do do )

i=1

To find its Expected value we note that
dlog L _1dL
o Ldo
g(tlos L) [ (el L, i
do ) de
dL
— J‘... J‘—d-é dxl...dxn

=if...dexl...dx,,.
a0

Hence

The integral is by definition equal to 1 and so its first derivative
is 0. (In reversing the order of integration and differentiation
here and elsewhere in the Appendix it is assumed that the
range of integration is independent of 6.)
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To find the variance of d lzg L we note that

d210gL=_¢_z’_ TdL\ 1 (dL\* | 1d42L
402 dO\L d6) ~  Iz2\ge Lde?
__(dlog L\* | 1 42L
do L d62°

It follows from the same argument as before that the Expected

V'aluc_ of the second term on the right-hand side of this expres-
sion 1s zero, and so

V(dlogL _ p(dlog LV _ _p(dHlog L
de do dez  J

We turn now to the sampling distribution of f. dlog L

) do
evaluated at 0 rather than at the true value of 8 is by definition

zero. 'This quantity is also approximately equal to

~

dlog L d?log L
- (o) £ o8

by Taylor’s theorem and so

0— = —log L[d>log L
9| e

To the same order of approximation we can substitute the

Expected for the observed value of dzjzzg_é in this equation

since. th? numerator, whose Expected value is zero, is the
dominating term. It follows that the Expected value of 0
is approximately 6, its Variance approximatcly 1/ —F d2log L)
' d62
and that it tends to be normally distributed in large samples.
We s%xall now. prove Fisher’s theorem on the lower limit of
the variance of an unbiased estimator. If ¢ is an unbiased
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dlog L

estimator of #, the covariance of ¢ and
since

Cov t,legL =FK t.d_logL =FE tlwciji
d de L do

=1.. td_L dxy...dx,
do ‘
d

d
—_ *d—?éj‘... Jvtdel...dxn = E(t) = 1.

is equal to 1

db
Now the square of the covariance of two random variables
must be less than the product of their variances (from the

Cauchy-Schwarz inequality, or from the fact that a correlation
coefficient must be between +-1 and —1), and so

dlog L
1=V () xV
=V < dg )

whence

v ] _ 1

v (d log L) E (d2 log L)'
db dg2
These results can easily be extended to the simultaneous
estimation of several parameters. If the likelihood is a function
of £ parameters, 0y, 05, ..., 0;, it can be shown by an analogous
dlog L @log L
28, a8, 7

argument that the £ random variables,

9 log L, all have zero Expected value, that the variance of
®
2
9 log L 15 —F 02 log L and that the covariance of 9 log L
691 803 i
. o2 . . .
and 0log L is —E log L . The kX% matrix containing

these variances and covariances, that is to say the matrix
in which the element in the ith row and jth column is the
2log L o1

ogL 4 og L

: i

covariance of , is usually called the
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information matrix and denoted by I. If we consider the &
equations of the kind

a PO o
log L (evaluated at 6y, 0,, ..., 8,) =0
s
. 0logL . 22 log L A a2 log L
= Bi—0) 5= 4 4 (8,—6,) 228"
a0, (=) 50,06, +(0e—by) 39,00,

in which the Expected values of the seccond derivatives can
be substituted for their observed values, it will be seen that
01, 02, ..., 0, arc asymptotically normal, asymptotically
unbiased and that their variance-covariance matrix is approxi-
mately 171, the inverse of 1.

For example, if n observations have been taken from a
normal distribution, then

9 log L
%_ = --n/a2, whose Expected value is —n/d2
[z
2log L« (xe—p) -
e Y > whose Expected value is O

02 log L _n “Z (x;—p,)Z

YL hose E s —
(902)2 9ot P whose Expected value is 5

Thus the information matrix is

n
I = o 0
.
204~

and the approximate variance-covariance matrix of 2 and 42 is

a2

I_l = —_ 0

n
) 2t

L J

The variance of 4 and the covariance are exact; the variance

of 42 is only approximately correct, which one might expect
since 62 is not unbiased.
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Proialems

1y, Ifixg), Xy, ...5 %¢ayis a sample of n observations re-arranged in rank
order from a continuous distribution with density function f(x) and
cumulative probability function F(x), show that the probability that x,,
lies between y and y-}-dy is

n!

T — Frap)[1-FO)l*=r f(y)dy
[Find the probability of obtaining r—1 observations less than y, n—r
observations greater than y and one observation between y and y-}-dy in a
particular order, and then multiply this probability by the number of ways
in which the sample can be re-arranged to give the same ordered sample.]

Suppose that the underlying random variable is uniformly distributed
between 0 and 1 and that n is odd. Show that the sample median follows
the Beta distribution (see Problem 8.8), evaluate its mean and variance,
and compare the latter with the approximate value derived from the
formula on p. 190,

11.2. Show that the mean and median of a random sample of 2n--1
observations from the uniform distribution

J) =k 0 < x < 2
Z‘LL

are both unbiased estimators of the population mean p.

What are their standard errors? The largest element of the sample is
2. Show that (n+ 1)y/(2rn-}-1) is also an unbiased estimator of u and find
its standard error. Comment. [Certificate, 1964. Note that Fisher’s
theorem on minimum variance estimators cannot be applied since the
range depends on pu.]

x1.3. Suppose that a suspension of bacteria contains p bacteria per c.c.
and that for a sample drawn from this suspension it is only possible to
determine whether it is sterile because it contains no bacteria or non-
sterile because it contains at least one bacterium. If n samples each of
c.c. are tested and a of them are found to be sterile and n—a non-sterile
find the maximum likelihood estimator of p and its standard error. What
is the best value of x?

11.4. Suppose that we wish to minimise ¢(x; ,x,, ..., x,) subject to the k con-
straints f (xy, ..., x,) == ... ==fi (%, ..., ¥,) = 0. This is most easily done
by the method of undetermined Lagrangian multipliers, that is to say by
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solving the n--£ equations

9% . Maf M0fx
= e =0 =1, ...
5x,-+ax;+ +6x¢ ! 2o
fi=fo= . =fi =0
in the n-{-£ unknowns xy, x,, ..., ¥, Ay, As, ..., A, (see Courant, 1934).
Suppose that m unbiased independent estimates, ¢, fy, ..., tm, have been
made of some parameter 8, having variances af, a%, . cr,%,. Find the

unbiased linear combination of these estimates, Yw,¢,, which has minimum
variance. What is this minimum variance? What happens if ¢, is a mean
based on n; observations from a population with variance o??

1r.5. One way of estimating the size of an animal population is to capture,
mark and release M animals out of the total population of unknown size
N and later, when the marked animals have mixed freely with the unmarked,
to catch a further sample of size n of which m are found to be marked.
If all animals are equally likely to be caught m will follow the hyper-
geometric distribution (Problems 6.7 and 6.8) since sampling is without
replacement, but if A{ is small compared with N, as is usually the case,
this can be approximated by the more tractable binomial distribution.
Show that, under the latter simplification, the maximum likelihood
estimator of V is the obvious estimate Mn/m. However, both the mean
and the variance of this estimator are infinite since m has a non-zero
probability of being zero! It is therefore preferable to estimate 1/ by
the better-behaved estimator m/nM, which is an unbiased cstimator of
1//V and whose variance can be exactly calculated. Calculate this variance
and show how approximate confidence limits can be constructed for 1/

and hence for V. Calculate a 95 per cent confidence interval for N in
this way when M =n = 100, m = 10.

11.6. In the above problem it was assumed that the size of the second
sample was fixed and that in repeated samples of this size the number of
marked animals would therefore follow a hypergeometric distribution.
An alternative procedure is to continue sampling until a fixed number of
marked animals has been caught, so that the total sample size 7 now becomes
the random variable; this method is known as inverse sampling. Write
down the probability function of n and evaluate its mean and variance
by finding E(r) and E[n(n---1)]. Hence show that nM/m is a biased
estimator of W, find an unbiased cstimator of NV of the same general type
and evaluate its sampling variance. [See Bailey, 1951]

.y Suppose that n,, n,, ..., n, are the numbers of observations falling
into £ exclusive classes and that P,, the probability of an observation
falling in the ith class, is a function of a single unknown parameter 6.
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Show that

d2log L ko1 (du)\®
I6) — —E (85 . v (20
@ ( a6 ) "i=1n,(d0\)
Given the model of Problem 2.5 and the data of Table 7 on p. 25 find
the maximum likelihood estimator of 8, find confidence limits for  and

hence find confidence limits for =, the probability of crossing over, where
0= (1—m)2

11.8. It sometimes happens that the maximum likelihood equation does
not have an explicit solution. In this case it can be solved by an iterative
procedure usually known as the method of scoring. Let us write S(6,) for

dlog L . o .
98 % evaluated at 8 = fy; this quantity is called the maxi-

the value of

mum likelihood score at . To solve the equation §(8) = 0, we evaluate
the score and its first derivative at some trial value, 6, thought to be near
0 and then calculate a corrected value, 8;, from the approximate formula

§(6y) = 5(8o)+(0:— 65)S"(60)
If we put S(8,) = 0, we find that
(6
5'(dy)

We now evaluate the score at §, and repeat the above process until it
converges. It may be simpler to use the Expected rather than the observed
value of the derivation of the score, in which case the above formula
becomes

L == by

§(8)
1(60)

0y = b+

where

B d*log L e
o) = -5 dﬂr)hao_ ELS"(60)].

I(8,) is called the amount of information at 6,.

Assume that you were unable to find an explicit solution for the maximum
likelihood equation in the previous problem and solve it by the above
iterative method starting with the trial value 6, = }.

CuarTER 12

REGRESSION AND CORRELATION

The scientist is often interested in the relationship between
two, or more, variables; for simplicity we shall suppose that
therc are only two. There are, broadly speaking, two main
types of problem. In the first, which usually gives rise to a
regression analysis, interest is focused on one of the variables
which is thought of as being dependent on the other, the inde-
[)ende{zt variable. For example, the velocity of a chemical
reaction usually varies with the temperature at which it is

taking place; in many cases the relationship follows Arrhenius’
equation

. B
log velocity = 4 — =
g y T

where T is the absolute temperature and 4 and B are constants
typ'ical of the reaction; a graph of log velocity against the
reciprocal of the absolute temperature will therefore give
a straight line with a negative slope. Reaction velocity is
}{ere the dependent and temperature the independent variable
since it is the rise in temperature which causes the increase
in velocity and not the other way round.

In the second type of problem, which usually leads to the
calculation of a correlation coefficient, neither of the variables
can be singled out as of prior importance to the other and one
1s mterested in their interdependence rather than in the de-
pendence of one of them on the other. For example, if one
had measured the length and breadth of the head in a group
of men, one might want to know to what extent the two were
associated although neither of them is causally dependent on
the other.

The theory of regression has many points in common with
that .of correlation, although they answer rather different
questions. It is now recognised that regression techniques
are more flexible and can answer a wider range of questions

209
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than correlation techniques which are used l'ess frequently
than they once were. We shall consider regression first.

LinearR REGRESSION AND THE METHOD OF LEAST
SQUARES

As a typical regression problem consider thf: data in Table %2
on the comb-growth (increase in 1ength+h01gh't 9f the_com )
in 5 groups of 5 capons (castrated cocks) receiving different
doses of androsterone (male sex hormqne) (Greenwood et al.,
1935). It will be seen from Fig. 30, in which Comb—grgwth
is plotted against the logarithm of the dose, that there is an
approximately linear relationship between thesc; two guantm}i:s
over the range of doses used. Comb—gr.owth is obv10usly tl e
dependent, and dose of androsterone the independent, variable.

TasLE 22
Comb-growth in capons receiving different doses of androsterone
Dose (mg. androsterone) % 1 2 g g
Log; dose (x) -1 0 1
8 5 13 17 17
1 6 7 14 17
12 14 20
Comb-growth (mm.) () ; 2 2 o e
1 4 11 13 15
x
2071 x
x :
2 x
E x ¥
£ x
: X
5101 x
i x x x
5 -
v X
0 _% ) 1 2 3

Log, dose (x)

Fic. 30. Comb-growth in capons receiving different doses of
androsterone
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Itis clear that, for a fixed value of the dose, the comb-growth
varies considerably from one bird to another and may be
regarded as a random variable with a mean, a variance and
so on, which will be symbolised by E(Y|x), V(¥] x), etc.,
where 1 stands for the comb-growth (the dependent variable)
and x for log, dose (the independent variable); it should be
noticed that whereas ¥ is a random variable once x has been
fixed, x is not a random variable but s fixed by and known
exactly to the experimenter. The characteristics of the distri-
bution of ¥ for a given value of %, and in particular E (7 | x),
are functions of x and may be expected to change with x.
The graph of E(¥ | x) as a function of x is called the regression
of Y on x; the purposc of regression analysis is to make infer-
ences about the form of this graph.

The simplest and most important type of regression is the
straight line

E(Y | %) = atBx

where 8 is the slope of the line and « its intercept at x == 0,
As we remarked above, the regression of comb-growth on log
dose seems to be approximately linear within the range of
doses from } mg. to 8 mg.; it cannot, however, be lincar
over the entire range of doses since (1) there must be an
upper limit to the comb-growth as the dose is indefinitely

increased, and (2) the comb-growth for zero dose, when log
dose = —o0, must be zero and not —oo!

illustrates the danger of extrapolation,
Let us suppose then that we have pairs of observations,
(x1,01), (%2, ¥2), ..., (%n, ¥n), on two variables of which x is the

independent and y the dependent variable and that we wish

to estimate the regression of y on x which is assumed to be
linear,

This example

E(Y | %) = a+tpBx.

The standard procedure is to choose as the estimated regression
line

= q+4-bx

that line which minimises the sum of the squared deviations
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of observed from estimated values of y, that is to say the line
which minimises the quantity

$2=Y (p—a—bx)2.

=1
These deviations are shown graphically in Fig. 31. This
method is known as the method of least squares. It was first

considered in connection with errors of astronomical observa-
tions by Legendre in 1806 and by Gauss in 1809.

X

Fic. 31. The ‘best’ line is the line which
minimises the sum of the squares of the
deviations in the direction shown

To find the line which minimises $? we must solve the pair
of simultaneous equations:

%g_z — 2 (pi—a—bx;) = —23 y;+2na+2byx; =0
a
a_gb.z = —2¥ x¢( yi—a—bxy) = —2% xi yi+2aY x+-2by 17 = 0.

The solution of the first equation is

a=j—bx
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which tells us that the line passes through the point (%, 7).
Substituting this expression in the second equation we find

b 2X0i—nE Y (% —E) (=)
Y x2 —ni? Y (xi—%)2
It is also convenient to have a formula for §2, the residual
sum of squares which has been minimised. We have

82 =Y (n—a—bu)2 =Y [(91—F) —b(x—%)]2
= Y (31—9)2 b2 (x: —F)2—2bF ( ys—F) (x:—F)
=Y (Ji—F)2 —b2) (a1 —X)2.

The second term in the last expression represents the contri-
bution to the variability of the »’s which has been removed by
calculating the regression.

We must now consider the justification of this method of
estimation. We suppose that the dependent variable is
normally distributed with a variance o2 which does not depend
on x. Our model is then

Vi = a+Briteq

where €;, the random error in the ith observation, is normally
distributed with zero mean and variance o2 The logarithm
of the likelihood of the observations is

log L = —{nlog 2 —{n log 02—} ( yi—o —Bxi)?/s2.

Since « and B occur only in the third term, the maximum
likelihood estimates of these parameters are found by mini-
mising that term and are thus the same as the least squares
estimates. The maximum likelihood estimator of ¢2 is S2/n.
It is also quite easy to show from their sampling distributions
(see Appendix) that these three estimators are jointly sufficient
for the three parameters of the distribution.

The sampling distributions of a, b and §2 are investigated
in the Appendix to this chapter. It must be remembered that
only the dependent variable is considered as a random variable
so that these distributions are obtained by imagining that
repeated samples of size n are taken with the same, constant
values of the x;’s but with different values of the ¢s and hence
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of the y’s. It is shown that a and b are normally distributed,
unbiased estimators of « and B respectively with variances
given by the formulae:

V() = o? {-1 + ————’f—-—}

n o X(xg—%)2

o2
Y (% —%)2
These variances are the minimum possible variances of any
unbiased estimators of « and B. Furthermore, $2/02 is dis-
tributed as a y2 variate with n—2 degrees of freedom
independently of a and b, so that s2=52/(n—2) is an
unbiased estimator of 2. The number of degrees of freedom
is 2 less than the number of observations because 2 parameters
other than ¢2 have been estimated from the data. The dis-
tributions of # and 4 are independent but the distributions of
a and b are not independent unless £ = 0, when a = j. When
% is positive @ and b are negatively correlated, which means
that an over-estimate of B is more likely than not to be
accompanied by an under-estimate of «, and vice versa; when
¥ is negative the contrary is true.

These results can be used to perform significance tests or to
construct confidence intervals by means of the ¢ distribution.
For example,

V(b) =

C=B) 3

follows the ¢ distribution with n—2 degrees of freedom. This
fact can be used either to test a particular value of B, such as
B = 0, which means that there is no relationship between the
variables, or to place a confidence interval on 8. Inferences
about « can be made in a similar way.

It has been assumed that the random errors in the dependent
variable are normally distributed with the same variance.
This assumption may be wrong in two ways. First, the under-
lying distribution may not be normal. In this case a and b
are no longer normally distributed, but their Expected values
and variances are unchanged; §2/02 no longer follows the x2
distribution but its Expected value is still n—2. Second, the
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variance of ¥ may not be constant but may depend on x; the
regression is then said to be heteroscedastic (from the Greek
meaning ‘ different scatter’). In this case a and b are still
unbiased estimators and are normally distributed if the under-
lying distribution is normal, but the formulae for their variances
require modification. If the form of the relationship between
.the variance of 1" and x is known, for example if the variance
is known to be proportional to x, more efficient estimators can
})e obtained by weighting the observations with weights
inversely proportional to their variances. In general, however,
small departures from normality or homoscedasticity will have

!ittle effect on inferences about the regression line and may be
ignored.

CURVILINEAR AND MuULTIPLE REGRESSION

' .It has been assumed so far that the regression is linear;
1t is clearly important to be able to test the adequacy of this
hypothesis. There are two ways in which this may be done.
Consider the data on the comb-growth of capons in Table 22.
We shall change our notation slightly and write y;; for the
response of the jth bird at the 7th dose level (e.g. y35=11)
and y;. for the average response to the ith level (e.g. y2. =6-2);
note that ¢ and j both run from 1 to 5. If we write the devia-

_tion of an observed value, D> from its estimated value, a-+ ba,
in the form

Js—a—bx¢ = (yi.—a—bx;) +(Dy—e)

the residual sum of squares can be split up into two com-
ponents:

§2 :Z‘; (y—a—bx)2 = 55 (1. —a—bx2+3Y (y5—s.)2
T Tt
$2 + oS

‘”lhe fa@or 9 occurs in §7 because of summation over the
}ndex Js the cross-product term vanishes because S (i—e.)
1s zero for all ;. i
2 .
S3 is the sum of the squared deviations of the observations
from their respective means; hence ilo? is a 2 variate

i
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with 20 degrees of freedom, regardless of the shape of the regres-
sion, since it 1s the sum of 5 sums of squares each with 4 degrees
of freedom. It follows that if the regression is linear, $2%/02
is a x2 variate with 3 degrees of freedom since in that case
$2/02 is a x2 variate with 23 degrees of freedom. (This can
also be proved directly from the fact that 5) ( yi. —a —Bx¢)2/02

is a x2 variate with 5 degrees of freedom; note that y;. is nor-
mally distributed with mean «-+fx; and variance o¢2/5.)
Hence, if the regression is linear, the mean squares, M, = S%/3
and M, = §%/20, are independent and unbiased estimators
of ¢2; if the regression is not linear the distribution of M,
will be unchanged but M) will have a larger Expected value.
A test for linearity can therefore be obtained by calculating
the ratio ' = M;/M,. If the regression is linear this quantity
will follow the F distribution with 3 and 20 degrees of freedom,
and we should expect it to be approximately 1; if the regression
is not linear its Expected value will be increased.

For the data in Table 22, §? =9-76 and §3= 111-20,
whence M; = 3-25, M, =5-56 and F = 3-25/5-56 = -58.
Since F is less than 1 there is clearly no reason to reject the
null hypothesis that the regression is linear; if F had been
larger its significance could have been evaluated from tables
of the percentage points of the F distribution.

This method of testing for linearity, which is typical of the
sort of argument used in the Analysis of Variance, can only be
employed when several observations on the dependent variable
are made for each value of the independent variable. Very
often, however, each x value occurs only once and another
method must be found. In this case the following argument
can be employed. It is unlikely that the regression is highly
non-linear; for if it were it would be obvious on inspection
and we should not be using a linear model. It is therefore
reasonable to suppose that the true regression can be approxi-
mated to a good degree of accuracy by a quadratic curve:

E(Y | %) = a+Batyx2
A test for linearity can therefore be constructed by finding

the best fitting quadratic curve by the method of least squares
and then testing the hypothesis that y = 0 by a ¢ test. The
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variance of ¢, the least squares estimator of y, can be calculated
by.an extension of the method used in the Appendix for calcu-
lating the variances of « and B in a linear model; the residual
sum of squares from the quadratic curve has n—3 degrees of
freedom. For further details the reader is referred to a book
on regression analysis such as Williams (1959).

The method of least squares can be used in a similar way to
calct_llate a cubic or a quartic regression, or in general a poly-
nomial of any degree. It can also be extended to situations
in which there are two or more independent variables. Sup-
pose that we wish to investigate the relationship between the
-yleld‘ of some crop and the rainfall and average temperature
in different years; we denote the values of these quantities
in the ith year by y;, xy; and xy,; respectively. There are now
two independent variables and a simple linear model would be

Ji = at Bt Boxyte

where, as before, € is a random error. The three parameters,
«, B and B,, can be estimated by the method of least squares
and significance tests or confidence intervals can be con-
structed. (For details of the calculations involved see Williams,
.1959, or Bailey, 1959.) If 8; = 0 rainfall has no effect and
if B3 = 0 temperature has no effect; if these parameters are
not zero, their values will provide information about the
mmportance of these two factors.

It should be noted that a regression of yield on rainfall alone
yv1ll not necessarily give the correct information about the
importance of this factor. Suppose that temperature is the im-
portant factor and that rainfall has little effect within the
range of variability represented. It is likely that hot years
.w111' be dry years and that cold years will be wet. If the yield
is higher in hot years than in cold years it will be found, when
we plot yield against rainfall, that the yield is apparently
hlghcr.in dry years than in wet years. This relationship may
be entirely spurious, due to the fact that dry years are hot
years and vice versa. The only way to find out which of these
two faFtors 1s the real causal factor is to calculate the joint
regression of yield on rainfall and temperature simultaneously.
Even then it is always possible that the real causal factor is
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some third, unconsidered variable correlated with either
rainfall or temperature. The possibility of spurious association
should always be borne in mind in interpreting non-experi-
mental data; this danger can be avoided in experimental
work by proper randomisation.

Tue ErrFecT OF ERRORS IN THE INDEPENDENT
V ARIABLE

It has been assumed so far that the independent variable is
known exactly to the experimenter and is not subject to random
error. This assumption is frequently not satisfied and it is
therefore important to investigate the effect of errors in the
independent variable on the regression line. To fix our ideas
we shall consider the regression of the height of sons on that
of their parents.

Height can be regarded as composed of a genetic contri-
bution on which is superimposed a random element due
to environmental differences. Let us first suppose that the
environmental component is negligible so that actual height
is the same as genetic height. If both parents make equal
genetic contributions, then the son’s height will on the average
be equal to the mean height of his parents; that is to say,
the regression of son’s height (§ ) on the heights of his father
(F) and mother (M) will be

S = LF+1M.

There will of course be some random variability about this
regression line because each parent contributes only half
his genes to his offspring. Furthermore, if parents marry
at random with respect to height, that is to say if there is no
tendency for tall men to marry tall women, the regression of
son’s height on father’s height will be

= jptiF

where p is the average height in the population. Likewise the
regression of son’s height on mother’s height will be

S = 2”‘*“%1\/1.
(For the sake of simplicity, sex differences in height have
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been ignored.) If, however, there is a tendency for tall men
to marry tall women, then a knowledge of the height of one
parent enables us to predict something about the height of
the other parent, and so the regression coeflicient will be

increased; that is to say the regression of son’s height on
father’s height will be
S =atpBF

whf:re B 1s greater than }; « must then be less than 4u to
maintain the average height of all sons constant. In the
extreme case when there is a perfect correlation between the
heights of husband and wife, that is to say when men marry

women of exactly their own height, the regression of son’s
height on father’s height will be

S=1F

Let us now consider the effect of the environmental com-
ponent on these regressions; actual height is now to be regarded
as the sum of genetic height and a random error contributed
b).f th(? environment; we may define the environmental con-
tribution in such a way that its mean value is zero. The effect
of this environmental contribution to the son’s height will
clearly be to increase the scatter about the regression lines but
to lea..ve the lines themselves unaltered. The environmental
antr1bution to the heights of the parents, on the other hand
will not only increase the scatter about the line but will de:
crease its slope. A tall father, for example, may be tall for one
of two reasons; his genetic height may be large, or the environ-
mental contribution may be large. In fact both these factors
are likely to be large, but it can be seen that on the average tall
fathel"s are more likely to have large, positive environmental
contrl.butions than short fathers. It follows that the average
genetic height of a group of tall fathers must be less than their
f'ictual height since their average environmental contribution
is greater than zero. Similarly the average genetic height of a
group of short fathers will be greater than their actual height.
Hence the slope of the regression of son’s height on father’s
actual height will be less than that of the regression on his
genetic height.

A classical paper on the inheritance of height in man was
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published by Pearson and Lee in 1903. They found that the
joint regression of son’s height, in inches, on the heights of

both parents was
S = 144 -41F+4-43M.

This result was based on over a thousand observations, so that
there can be no doubt about its reliability. The regression
coefficients are significantly below the value of % predicted
on the assumption that height is entirely under genctic control;
it must be concluded that there is an appreciable environ-
mental effect. The single regressions on father’s height and
mother’s height were respectively

S = 34+ -52F
and S = 34+ -56M.

The regression coefficients are higher than the corresponding
coefficients in the double regression because the heights of
the two parents are correlated; the correlation cocflicient
was in fact -25.

Suppose, to take another example, that a new method
has been developed to measure the concentration of some
substance in solution and that in order to test its validity
measurements, y1, ¥, ---» ¥n, have been made by this method
on 7 solutions of known concentrations, Xy, X2, -, ¥n. If
the method provides an unbiased measure of the concentration,
the regression of y on x should be a straight line with unit
slope passing through the origin. If, however, the x;’s are
not known concentrations but are themselves estimates by
another method of known validity but subject to random
error, the regression of y on x will have a slope less than unity
and will cut the y axis above the origin; the constants of this
line cannot therefore be used to test the validity of the new
method. '

The presence of error in the independent variate thus
decreases the slope of the regression line. Whether or not this
matters depends on why one is interested in the regression.
If one wants to know the underlying relationship between the
dependent and the independent variables, that is to say the
relationship which would exist between them if there were no
random error in either of them, then the presence of error
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in the independent variable destroys our information about
this relationship. If we knew the relative magnitudes of the
variability of the two variables we could calculate by how
much the slope had been decreased by the errors in the inde-
pendent variate and hence make a correction to our estimate
of the slope. Usually, however, we do not know the relative
magnitudes of the two sources of crror. In these circumstances
the underlying relationship is unidentifiable however many
observations are made, and the hest that can be done is to
argue that the underlying relation must lic somewhere between
the regression line of y on x and that of »x on y; thc former
would be the appropriate regression to consider if all the
variability could be attributed to random errors in y and the
latter if it were all due to errors in x. These two regressions
are of course not the same; the rclationship between them will
be considered in the next section.

The presence of random errors in both variates makes the
underlying relationship between them unidentifiable.  If]
however, one wants to use the regression line only for purposes
of prediction this does not matter. For example, the regression
of son’s height on the height of his parents

S = 14+ -41F+43M
is not a valid estimate of the regression of son’s height on the
genetic height of his parents. It is nevertheless a valid formula
for predicting the height of a son given the heights of his
father and mother. If one is interested in regressions for
prediction purposes rather than for testing some theoretical
model about the underlying relationship, the presence of error
in the independent variate does not matter.

CORRELATION

We shall now consider the case when both variables are
random variables having some joint probability distribution;
as a typical example we shall take the joint distribution of
head breadth and head length in Table 10 on p. 40. The
regression of ¥ on X is defined as the conditional Expected
value of ¥ given that X = x, or in symbols E(Y|X = x); this
is the limiting value of the curve obtained by plotting the
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average value of y lor different values of x. For example, the
crosses in Fig. 32 represent the average head breadth for fixed
head length; it is clear that the regression of head breadth on
head length is very nearly linear, and that the linear regression
calculated by the method of least squares passes almost exactly
through the crosses. The other line in Fig. 32 is the linear

-
~ hoal
T

-
&
T

(Head breadth in centimetres)

13 1 1 1
16 17 18 x 19 20
(Head Jength in centimetres)

Fic. 32. The regressions of » on x and of x on y for the data of
Table 10

regression of head length on head breadth, and the circles
represent the average head length for fixed head breadth, the
curve through which tends to the regression of X on ¥. This
figure illustrates the very important point that the regression
of T on X and of X on Y are not the same; we should use the
former regression if we wanted to use x to predict » and the
latter if we wanted to use y to predict x.

If y = a+bx is the linear regression of y on x calculated by
the method of least squares and if x = a'-}-4'y is the corres-
ponding regression of x on y, then

= 12— (i) _ 2.
E(x; —%)22(y;—5)?
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(See p. 74 for the definition of the correlation coefficient, 7.)
Thus if r2 = 1 the points lie exactly on a straight line and so
the two regression lines are the same. Otherwise, however,
b’ is less than 1 and so the two lines do not coincide; for the
condition that they coincide is that 4’ = 1/ or 64’ = 1. The
smaller 72, the larger is the angle between the two lines until,
when r2 = 0, they are at right angles since the regression of
J on x is parallel to the x-axis and that of x on y is parallel to
the y-axis.

The concept of regression can therefore be meaningfully
applied to a bivariate distribution, but it is often most useful
to calculate some measure of the degree of relationship between
the variables. The correlation coefficient is used most frequently
and we must now consider what this coefficient measures.
If we fit a linear regression of y on x, y = a-} bx, the residual
sum of squares of the »’s about this line is

§2 = (- FPR—F ).
The second term on the right-hand side is the sum of squares
removed by fitting the line. It can easily be shown by sub-
stituting the appropriate formula for b that
2 bzz(m —“)E),z.

2 pi—9)?

The square of the correlation coefficient is thus the sum of
squares removed by estimating b expressed as a proportion of
the original sum of squares. Tt follows from a similar argu-
ment that 72 can also be considered as the proportion of the sum
of squares of the x’s removed by fitting the regression of x on y,
x = a'+0b’y. The correlation coefficient does not give a privi-
leged position to cither of these variables. It is clear that r2
must lic between 0 and 1 so that r must lie between —1 and +1.
The correlation coefficient is negative when 6 is negative and
positive when 4 is positive. It takes the extreme values -1
or —1 when the points lie exactly on a straight line and it is
zero when b is zero. It is thus a reasonable measure of the
degree of association between the two variables provided that
there is a linear relationship between them.
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We must now consider how the observed value, 7, can
be used to perform significance tests and find confidence
intervals for the true value, p. (See p. 74 for the definition of
p.) We shall first construct a significance test to test whether
or not p = 0. We shall suppose that X and 7 are in fact
independently and normally distributed; if this is so then
p = 0, although the converse is not necessarily true. Under
these circumstances the quantity

rVn—2

V12
should follow the ¢ distribution with n—2 degrees of freedom.
To test the hypothesis that p == 0 we therefore calculate this
quantity and then find the probability of obtaining a value
as large as or larger than the observed value from tables of
the ¢ distribution. A two-tailed test will usually be appropriate
but we could usc a one-tailed test if’ we knew, for example,
that p could not be negative.

(To prove that this quantity should follow the ¢ distribution

we observe that, if we calculate the regression of y on x, then

O TR LA W V([ ) O

S22 L)AL 52

SIS DD X o) i A WS

S (yi—5)? S (i—9)?

If we divide the first expression by the second, multiply by
n—2 and then take the square root we find that

and

Vn—2 bV (x—3)?
V1—r2 s

We have already seen that, for fixed values of the x/’s, the
quantity on the right-hand side follows the ¢ distribution
with n—2 degrees of freedom when B = 0. Since it follows
this distribution for any fixed values of the x¢’s it must follow
the same distribution when they become random variables.)
We must now consider the sampling distribution of r when p
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is not zero. We shall suppose that the marginal distributions
of X and 7 are normal and that the regression of ¥ on X is
linear, that is to say that the conditional Expected value,
E(Y | X = x), is a linear function of x. (If the regression is
not linear the correlation coeflicient is not a useful measure
of the degree of association between the two variables.) Under
these circumstances the joint distribution of X and ¥ is the
bivariate normal distribution (see Problem 12.4.) An explicit
expression can be found for the sampling distribution of a
correlation coefficient calculated from a sample of size
n from this distribution but it is rather complicated
and its shape depends on p, being skew to the left when p
is positive and skew to the right when p is negative. Fisher

(1921) has shown that the transformed variate z = } log 1

I —r

1s approximately normally distributed with mean { = }log i_—*__p

—p

and variance 1/(z—3). This distribution is much easter to

handle than the distribution of r since only its mean depends on

p and since tables of the normal distribution are readily avail-

able; Fisher’s z transformation is tabulated in most statistical
tables.

The possibility of spurious correlation should always be
borne in mind in interpreting correlation coefficients. Thus
it has been shown that there is a high correlation between
mortality from heart disease and the annual number of
television licences issued. It would be wrong to conclude
that watching television causes heart disease; the correlation
is due to the fact that both heart disease and television viewing
have increased over the years, though for different reasons.
On the other hand, the correlation between lung cancer and
smoking almost certainly reflects a causal connection between
the two; a great deal of special pleading is required to explain
this correlation as due to some third factor, such as a hereditary
predisposition, which causes both lung cancer and a tendency
to smoke excessively. One can never be certain in non-
experimental situations that a correlation reflects a true
causal connection but common sense must be used in deciding
whether or not this is likely.
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APPENDIX
Sampling distributions of lincar regression estimates

Our model is that

1=1,2, ..,n

_)’i == (X+ﬁxi+€1

where the s are normally and independently distributed
with zero mean and variance o2. We consider first the sampling
distribution of 4. The numerator of 4 is

Y (5—5) (1—F) = Yxi—H) 3¢ = ¥ri—4) (a-+ri-tes)
— B (xe —H)2+ Yerlxi ).

(Note that " (x;—%), and hence any constant multiple of this
quantity, is zero.) Hence

_2Em=R)(e—F) _ 5 Yei(n—3)
b Z(xi —~.f)2 IB+ Z(xf ——.2—?)2

6is thus normally distributed since it is the sum of nindependent
normal variates. Furthermore E(b) = B since E(e) =
for all ¢, and the variance of 4 is the Expected value of the
square of the second term, which is ¢2/¥ (x;—#)2. (Only the
coeflicients of terms like ¢ need be considered since E (e65) =0
for i #7.) Thus b is normally distributed and is an unbiased
estimator of 8 with the above variance.
We now turn to the distribution of a.  We first note that

J =3 yin = a4 Bi+Y eifn.

It follows that j is normally distributed with mean «+ 8%
and variance ¢2/n. Furthermore the covariance of 7 and b is

Sl

which is zero since }'(¥; —%) = 0. Hence a = j —b% is normally
distributed with mean

E(a) = E(j) ~FE(b) = o
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and variance

_ 1 %2
Via) =V V() = o2 |2+ 2
@ =VOoHarn = [Le B
Thus ¢ is an unbiased estimator of « with the above variance.
Finally we consider the distribution of the residual sum of
squares, $2.  We first note that

€ = (s —a—Pux;)
= (s —a—bxq) +(J—a —B%) + (b —p) (xi —%).

Squaring and summing over 7 we find that
e} = 82+n(J—a—PE)24(b —B)2Y (xi—%)2.

If we divide both sides by o2, the left-hand side becomes a x2
variate with n degrees of freedom and the second and third
terms on the right-hand side are independent x2 variates with
1 degree of freedom; they are independent because b and 7
are uncorrelated. It follows from the argument developed
in Chapter 8 that $2/02 is a y2 variate with n—? degrees of
freedom and is distributed independently of ¢ and b.

Exercises

12.1, From the data in Table 22 on p. 210 calculate Zxy Ty, le?‘, 52
and Zx;y; and hence find the equation of the best-fitting straight line.
[In evaluating sums like T, it should be remembered that cach dose level
occurs five times.] Reproduce Fig. 30 and plot this line on it.

12.2. Find the residual sum of squares in the ahove example (a) directly

by squaring the deviations of the observed from the predicted points, (b)
from the formula on p. 213.

12.3. Find 95 per cent confidence intervals for « and 8 in the above
example.

12.4. Tind the regressions of head breadth on head length and of head
length on head breadth for the data in Table 10 on p. 40 (sce Exercises
4.6, 4.7 and 5.5). Find also the mean head breadth for fixed head Iengths
and vice versa and hence reconstruct Fig. 32.

12.5. Find a 95 per cent confidence interval for the correlation between
head breadth and head length (see Exercise 5.5).

12.6. Use the data in Table 19 on p. 149 to find the correlation between
the hours of sleep gained by the use of hyoscyamine and of hyoscine. Test
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whether this correlation is significantly different from zero. Would you
expect these variables to be correlated ?

Problems
12.I. Suppose that n paired observations have been made obeying the
regression model
Yi=o-}pr,te;

where the g;’s are normally and independently distributed with zero
mean and variance ¢2. A further observation, x,, ., is made and is used

i=12,..,n

to predict the corresponding value of y from the formula 3% | = a-}bx, .

Find the variance of (9,;:—9¢, 1) and hence show how a 95 per cent
confidence interval for y, ., can be constructed.

12.2. Suppose that y; = «+px;-}¢; where the ¢,;’s arc independently but
not necessarily normally distributed about zero with variance ¢2. Show
that the least squares estimators of « and B have the smallest variance
among all unbiased estimators which are linear in the y,/s. This is an
application of the Markov thcorem on least squares. (Use the method of
Lagrangian multipliers described in Problem 11.4.)

12.3. If X and ¥ are random variables having variances o’i and ayz and if
E(Y| X =x)=oa{Brand V(¥ | X == x) = o2, show that Cov (X, V) = ﬁai-
(Evaluate E(XY) by taking the Expected value first over 1" for fixed X
and then over X.) Hence, by considering the identity

V(¥—o—BX) = o> =0} +pt’ —~2p Cov (X, 1)
s how that ¢2 = 03 (l—p2).

12.4. Suppose that the regression of 1" on X is linear and homoscedastic
as in the previous problem. Suppose furthermore that the conditional
distribution of ¥ given X == x is normal for all x, as is the marginal distri-
bution of X. Show that the joint distribution of X and ¥ has the density

function
~ s L(52) -2 (52) (52) + (527
. e 2(1—p?) Ox Ox ay Iy
S (%, p) = e

Qﬂaxoy v/ ( 17—:p2)

This is called the bivariate normal distribution; the contours of constant
probability density are ellipses.

12.5. Suppose that X and 7 have some bivariate distribution and that the
regression of ¥ on X, E(¥ | X == &) == $(x), is not necessarily linear. For
purposes of prediction we may seek to find the best linear estimate of
given X, that is to say the linear function of X, «-}BX, which minimises
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the mean square prediction error, E(¥—oa—pBX)2. This is called the
linear mean square regression of ¥ on X. Show that it is given by

ov(X,¥) o,
=z  —r
Ux ax

% == py— Buy

and that the minimum value of the mean squarc prediction error is
2 :
oy (I“Pz)-

12.6. Suppose that £ varieties of wheat have each been grown on n plots
randomly chosen in a field divided into nk plots. We shall denote the
yield of the ith variety on the jth plot in which it is grown by »,; and we
shall suppose that

Yis= pites

where y; is the true mean yicld of the ith variety and g,; is an error term
which is normally distributed with zero mean and variance o2, which is
the same for all varieties. We shall define the treatment sum of squares,

S%, and the error sum of squares, .S ,23, by the formula
2
St=nY (-2
i

SE=Y (pu—2:)?

LI

where p;, is the mean yield of the ith treatment and y _is the overall mean

yield. Find the Expected values of $7 and S7 and show that SZ/o? is a 2
variate with k(n— 1) degrees of freedom. If the pu,’s are all the same show

that $%/e? is an independent x? variate with (£—1) degrees of freedom.
Hence show how an F-test can be constructed to rest whether the different
varieties of wheat all have the same yield.

This problem illustrates the simplest case of the Analysis of Variance
known as a completely randomised design. It is in effect an extension of
the t-test for testing the difference between fwo means to a situation in

which we wish to test simultaneously whether there are differences between
several means.

12.7. As an example of the completely randomised design, analyse the
following data (extracted from Latter, 1901 and abbreviated for simplicity)
on the lengths of cuckoos’ eggs (in millimetres) found in nests of foster-
parents of different species:
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STATISTICAL TABLES 231
Me:«:td.ow- Tree- Hedge- Robin Reed- Pied- Wren
‘ pipit pipit  sparrow warbler wagtail - -
!. STATISTICAL TABLES
21.7 227 220 218 232 230 198 |
22:6 233 23-9 23-0 22-0 23-4 22-1 | ) . S
20-9 240 209 2%-3 929.9 24.0 21-5 The following tables have been abridged from Biometrika Tables
216 236 238 22-4 21-2 23-3 20-9 | Jor Statisticians, Vol. 1, by permission of the Biometrika Trustees.
22:2 22:1 25-0 22.4 21-6 23-1 22.0 {
22-5 218 24-0 23-0 21-6 22-4 210 ; T
222 211 217 230 219 218 22-3 . anee |
24.3 9234 23.8 23.0 22.0 21-8 21.0 ‘ The probability density function of the standard norrnal
223 238 228 239 229 249 203 | distribution
22-6 233 23-1 22-3 22-8 24-0 209

. . 1
This table gives values of ¢(z) = v e~ 4z% for negative values of z use
m

the relationship ¢(—2) = ¢(z).

z $(2) z $(2)
00 -3989 20 -0540
01 3970 2-1 -0440
0-2 3910 2-2 -0355
0-3 3814 2-3 0283

| 0-4 -3683 2-4 0224
i 0-5 3521 2-5 0175
06 3332 2:6 0136
0.7 -3123 247 0104
08 2897 2-8 0079
09 -2661 29 0060

1-0 <2420 3-0 0044
1-1 2179 3-1 0033
1-2 1942 3-2 -0024
1-3 1714 33 -0017
1-4 1497 34 0012
15 1295 35 0009
1-6 1109 36 0006
1-7 0940 3.7 0004
1-8 0790 3.8 0003
19 0656 39 0002
20 0540 4-0 0001
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TasLe 2 TasrLe 3
aye . P t : t: f h . . .
The cumulative probability function of the standard creentage potnts of the ¢ distribution
normal distribution This table gives values of ¢ which are exceeded with probability P; the
probability that these values will be exceeded in either direction, that is to
This table gives values of @(z) = Prob[Z=<z] == —__ e~ ¥y, say in absolute value, is 2P.
I I Value of P

for negative values of z use the relationship ®(—z) = 1 —@(z). Degrees of freedom  -05 -025 .01 005 001 -0005

z ?(2) z &(2) ; I 6-314 1271 31-82 6366 3183 6366

2 2920 4303 6695 9925 2233  31.60

0-0 5000 2:0 9772 | 3 2:353  3.182 4541  5.841 1021  12:92
0-1 5398 2.1 9821 4 4 2132 2776 3747 4604 7-173 8610
0-2 5793 2:2 9861 | 5 2:015 2571 3365 4032 5893 6869
0-3 6179 2:3 9893 6 1943 2447 3143 3.707 5208 5959
0-4 6554 2-4 -9918 7 1-895 2365 2-998 3-499 4.785  5-408
0-5 6915 2:5 9938 8 1-860 2-306 2-896 3.355 4501  5.041
~ 9 1-833 2262 2821 3250 4297  4.781

06 7257 2.6 -9953
P 7580 P 9085 ‘ 10 1-812 2228 2764 3169 4.144  4.587
0-8 7881 2.8 9974 1 1796 2:201 2718  3-106 4025  4.437
0-9 8159 2.9 9981 ( 12 1782 2:179 2681 3.055 3930 4318
10 8413 3-0 9987 13 1771 2-160 2650 3-012 3852 4221
14 1761 2-145 2624 2.977 3.787  4.140
1-1 8643 3.1 -9990 ] 15 1753 2-131 2602 2.947 3.733  4.073
- i g 32 oo 16 1746 2:120 2583 2921 3686 4015
L olon o 9907 17 1740 2-110 2567 2898 3-646  3.965
L5 9332 3 9908 18 1-73¢  2-101 2552 2.878  3.610  3.922
19 1-729  2-093 2-539 2.861 3.579  3.883
16 9459 3.6 9998 20 1725 2-086 2.528 2.845 3.552  3.850
17 9554 3.7 -9999 21 1.721 2080 2518 2.831 3.527 3819
18 9641 3-8 -9999 29 1717 2074 2508 2819 3.505  3.792
19 9713 3.9 1-0000 j 23 1714 2069 2500 2807 3485 3767
2:0 9772 4.0 1-0000 | 24 1711 2-064 2492 2.797 3467  3.745
. 25 1708  2-060 2485 2.787 3-450  3.725
26 1706  2:056 2479 2779 3435  3.707
97 1:703  2:052 2473 2771 3421  3-690
98 1701  2-048 2467 2.763 3408 3.674
29 1699  2:045 2462 2.756 3396  3-659
30 1-697 2042 2457 2.750 3.385 3.646
40 1684 2-021 2423 2.704 3.307 3551
60 1671 2000 2-390 2.660 3-232  3-460
120 1-658 1980 2358 2.617 3-160 3-373
o (Normal) 1645 1960 2-326 2.576 3.090  3-291
Q
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‘TABLE 4 TABLE 5a
Percentage points of the y2 distribution . . o
sep X Five per cent points of the F distribution

This table gi f x2 whi 3 ility P. . . -
vis table gives values of x2 which are exceeded with probability P This table gives values of F which are exceeded with a probability of -05.

2
Degrees 99 975 .05 095 0l 001 1 1614 1995 2157 224-6 2302 2340 2439 2543

of freedom 2 18-51 1900 19-16 19-25 19-30 19-33 1941 19:50
i 3 10-13 9-55 928 9-12 9-01 8-94 8-74 853
1 00016 00098 3-84 5-02 6-63 10-83 } 4 7:71 694 659 639 626 616 591 563
p et e 099 T 92 e l 5 661 579 541 519 505 495 468 436

. . . . . .27 ‘
4 297 484 940 1114 1328 1847 » 6 599 514 476 453 4-39 428 400 367
5 55t 831 1107 1283 1509  20.51 | 7 559 474 435 412 3.97 387 3.57 323
8 5-32 4-46  4-07 3-84 3-69 3-58 328 293
! 24 169 1407 1601 1848 24.32 ? 10 496 410 371 348 333 322 291 254
8 165 218 1551 1753 2009  26-13 ; 1 484 398 350 336 320 309 279 240
" 209 270 1692 1902 2167 2788 ; 12 475 389 349 326 311 300 269 230
256 325 1831 20148 2321 2959 | 13 467 381 341 318 303 292 260 221
11 3.05 3.80 19-68 91.92 94.79 31.96 | 14 460 374 334 3-11 2-96 2-85 2-53 2-13
12 3-57 4-40 21-03 23-34 26-22 3291 ; 15 454 368 3929 306 290 279 2.48 2.07
13 4-11 5-01 22-36 24-74 27-69 34-53 : 16 4-49 3.63 3.94  3.01 2.85 2.74  2.49 2.01
14 4-66 563 23-68 26-12 29-14 36-12 17 4-45 359 320 2.96 2-81 2.70  2.38 1-96
15 5-23 6-26 25-00 27-49 30-58 3770 ; 18 4-41 355 3.16 293 92.77 2.66 2-34 1.92
| 19 4-38 3-52 313 290 274 263 2-31 1-88

16 5-81 6-91 26-30 28-85 32-00 3925 ‘
17 6-41 7-56 27-59 30-19 33-41 40-79 i 20 4-35 3-49 3-10 2-87 2:71 2-60 2-28 1-84
18 7-01 823 28-87 31-53 34-81 42-31 1 21 4-32 3-47 3-07 2-84 268 2-57 2:25 1-81
19 7-63 8-91 30-14 32-85 36-19 43-82 i 22 430 344 305 282 2-66 2:55 223 1-78
20 826 9-59 3141 34-17 37-57 45-31 : 23 4-28 3-42 303 280 2-64 2-53 2-20 1-76
i 24 4-26 340 301 2:78 2-62 2-51 2-18 173

21 8-90 10-28 32-67 35-48 38-93 46-80 :
22 9-54 10-98 33.92 36-78 4029 48-27 '; 25 424 339 299 2.76 2-60 249  2-16 171
23 10-20 11-69 35-17 38-08 41-64 49.73 26 423 3.37 298 274 2-59 247  2-15 1-69
24 10-86 12-40 36-42 39-36 42-98 51-18 27 4-21 3-35 296 273 2-57 246 213 1-67
25 11-52 13-12 37-65 40-65 44-31 52:62 28 4-20 3-34 2-95 271 2-56 2-45 2-12 1-65
29 4-18 333 293 270 255 243 2.10 164

26 1220 13-84  38:89 4192 4564  54:05

27 12-88 14.57 40-11 43-19 4696 5548 30 417 332 292 269 253 242 209 162
28 13-56 15.31 41-34 4446 48-28 56-89 | 40 4-08 3.23 2:84 2-61 2:45 2-34 2-00 1-51
29 14-26 16-05 49.56 45.79 49.59 58-30 60 400 315 276 253 2:37 225 1.92 139
30 14-95 16-79 4377  46-98 50-80  59-70 120 392 307 268 245 229 217 183 125
@ 3-84 300 260 237 221 2:10 1-75 1-00
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TaBLE 5b
One per cent points of the F distribution

This table gives values of F which are exceeded with a probability of 01

S 1 2 3 4 5 6 12 @
4052 4999-5 5403 5625 5764 5859 6106 6366
98-50  99-00 9917 9925 9930 99-33 9942  99-50
3412 30-82 2946 2871 2824 27991 27-05 2613
21-20  18-00  16-69  15-98  15-52 1521  14-37 13-46
16-26 1327  12:06 1139 1097  10-67 9-89 9:02
1375 10-92 9-78 915 8-75 8-47 7-72 688
12-25 9-55 845 7-85 7-46 719 6-47 565
11-26 865 7-59 7-01 6:63 6:37 567 4-86
10-56 8-02 6-99 6-42 6:06 5-80 511 4-31
10-04 7-56 6-55 5-99 5-64 5-39 4-71 3-91
9-65 7-21 6-22 5-67 5-32 5-07 4-40 3-60
9-33 693 5-95 541 5-06 482 4-16 3-36
9-07 6-70 5-74 5-21 4-86 4-62 3-96 317
8-86 6-51 5-56 5-04 4-69 4-46 3-80 3-00
8-68 6-36 5-42 4-89 456 4-32 3-67 2-87
8-53 6-23 5-29 477 4-44 4-20 3:55 275
8-40 6-11 5-18 4-67 4-34 410 3-46 2:65
8-29 6-01 5-09 4-58 4-25 4-01 3-37 2:57
8-18 5-93 5-01 4-50 417 3-94 3:30 2:49
8-10 5-85 4-94 4-43 4-10 3-87 3-23 2-42
8-02 578 4-87 437 4-04 3-81 317 2:36
7-95 5-72 4-82 431 3-99 376 3-12 2:31
7-88 5-66 4-76 4-26 3-94 371 3-07 2:26
7-82 5-61 4-72 4-22 3-90 3-67 3-03 2:21
777 5-57 4-68 418 385 3-63 2-99 2:17
7-72 5-53 4-64 4-14 3-82 3-59 2:96 213
7-68 5-49 460 411 3-78 3-56 2:93 2:10
7-64 5-45 457 4-07 375 3-53 2-90 2-06
7-60 5-42 4-54 4-04 373 3-50 2-87 2-03
7-56 5-39 451 4-02 370 3-47 2-84 2-01
7-31 5-18 4-31 3-83 3-51 3-29 2:66 1-80
7-08 4-98 413 3-65 3-34 312 2-50 1-60
6-85 4-79 3-95 348 317 2:96 2:34 1-38
6-63 4:61 378 332 3-02 2-80 2-18 1-00

2.1.
2.2.

2.3.

2.4.
2.5.

2.6

2.7.

3.4.

4.9.
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ANSWERS TO EXERCISES

CHAPTER 2

(a) -160 compared with -159; (b) <175 compared with -182.
3
1
576 (1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1)
-5178, 4914
(a) 364 x363/3652; (b) 3 x364/3652; (c) 1/3652
4 cupboards are enough 95.85 per cent of the time
Yes, probability is -000547

x|
-1 01

CHAPTER 3

If =0, then X =0 with
probability 1

L

0 0 %3 0% 1fr=1, then Xis equally
1 ¥ 0 3% Jikely to be 41 or —1.

: P10}

. A cube. }.

CHAPTER 4

- (a) mean == 15-049, median = 15-044, () mean == 19-170,

median = 19-178.

3. my=—5172
4. T =n%, T? = n252, T?/n = nz.
.5. my==1-999

. mean == 15-049, m, == 0-270
. mean == 19-170, m, = 0-387
. Theoretical values, mean deviation == }, interquartile range =

T 2

standard deviation == 1/v'12 = 0-289
Interquartile range = 19-598 — 18-746 == 0-852
Interquartile range/standard deviation == 1-37

4.10. Skewness = -}-0-17, kurtosis == 2-52
4.11. Skewness = 0, kurtosis = 2-36
4.12. (a) 0-249 (b) 0-366

5.1.
5.2.
5-3-

CHAPTER 5
=10}, o2 =8}
mean — 78,61, standard deviation = 3:16 grains
Difference: p=0, ¢* =6} sq. in.
Sum: p==11ft 4 in, ¢2 = 18} sq. in.
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5.4. (X— &(¥Y—1n)=X(¥~—%) takes values —3%, 0 and } with equal
probabilities; hence its Expected value is 0.
For lack of independence see Exercise 3.4.
5.5. Lk —®)(p—7) == B(xyp;— 2, J = F+-%) == Zx; y;—JLn;— XLy +niy
= X, p;— % — NP} -niy == Lix, y; — .
covariance = 122, r == -377.
5.6, Xy, ==na-+bZx, j= a-}-bx, y;— = at-bx;— (a-bx) = b(x;— &),
. Bx—®)(e—) bZ(x;— %) b +1
VE(x, %)y =52 VEE(x—3)Z(x,—%)?* Ver

CHAPTER 6

6.1. -001, -036, -027, -432, -504

6.2. -0489, -0751.

6.3. Observed 2-53 and 1-29, theoretical 2-50 and 1-25.

6.4. (a) mean == 6-139, compared with 6; p==-5116
(b) my =2-931, compared with (¢) 3-000, (if) 2-998,
(c)
No.ofsuccesses 0 1 2 3 4 5 6 7 8 9 1011 12
Expected (P==13)1 12 66 220 495 792 924 792 495 220 66 12 1
Expected (P==p) 1 9 55 191 450 754 921 827 541 252 79 15 1

6.5. (a) 2-1 x 1078 compared with 2-5x10-6; (b) 3-6 X 10-3 compared
with 1-2 x 10-3.

6.6. No. of cells 0 1 2 3
Expected no. of squares 106 141 93 41 1

6.7. (a) 0894, (b) 0907

6.8. (a) m==16-7, my— 16-4; (b) m = 26-2, m, = 2169. The very high
variance in (b) is largely, but not entirely, due to a single big
observation.

6.9. m = 3-35 (3-26 from ungrouped data); Vm, = 3-40

6.10. ¢1:5 =223

4 5 6
4 4 1

CuAPTER 7

7.1. (@) 266, (b) -030, (¢) -245
7.2. (a) 721, (b) 40
7.4. Head breadth (cm)
13—~ 134— 14— 143— 15- 154— 16— 164—
Expected frequency
2 39 304 919 1103 526 99 8
7.5. (a) -842, (b) -976 compared with theoretical values of -841 and -977
.6. 977
;.7. If x; is no. of cupboards required by ith chemist, then x = Xx,, is
approximately normal with p==50E(x,) ==25, o?==50V(x,) ==
22-5 . p-}-1-645¢ == 33.

j
|
|
|
|
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7.8. -179; about 3452
7.9. About 170.
7.10. About 400.

CHAPTER 8

8.1. About 025 since Prob [y = 2:70] = -975
8.2. About ‘002 since the chance that a ¢ variate with 3 d.f. will exceed
10-21 is -001.

8.3. About -05 since 4-28 is the upper 5 per cent point of an F variate
with 6 and 6 d.f.

CHAPTER 9

9-1. d==0-63, P==0-53 (two-tailed). Not significant.
9.2. d==2-83, P — 0-0023 (one-tailed). Significant at 1 per cent level.
9.3. d==121, P =022 (two-tailed). Not significant
This can also be treated as a 2 x2 table, X[ZI] == 147,
9-4. 1==1-69 with 10 d.f.,, P > 0-10 (two-tailed, since it is conceivable
that kiln-drying will reduce yield)
9.5. () t==2-06 with 4 d.f., -05 < P < -10 {one-tailed)
(b) t=13-75 with 4 d.f, highly significant
(¢) ¢ ==1-44 with 8 d.f,, not significant
9.6. (a) d == 5-14, highly significant
(B) x2==7-0 with 9 d.f. (combining 0—1 and 11~ 12); not significant
9.7. {a) x?==2-4 with 2 d.f. (combining 3-+); not significant
() x* = 61-9 with 2 d.f. (combining 3--); highly significant
(¢) x*=13-2 with 4 d.f. (combining 5-); not significant
9.8. (a) x* =9.9 with 13 d.f. (combining < 58" & 73”+); notsignificant
(b) x* = 8-24 with 4 d.f. (combining 13— with 134 —); notsignificant
at 5 per cent level.
9.9. (a) x*==94 with 5 d.f.; highly significant
() x2==271 with 5 d.f.; highly significant
(¢) x* =18-8 with 25 d.f.; not significant
(a4-b) (a-t-c) __na— a(a--b-4-c)— be _na—an—d)—bc ad—be

9.10. a— - " - "
and likewise for other values of (0—E). Hence
0—E):
p—y =B
__(ad—bc) {(6+d) (6+4-d)+(a+-c) (c-+d) +(a4-) (b+d) - (a-+b) (a-c)
n (a+b)(c-+d)(a+c) (b1-d) }
_ n{ad— bc)?
(a+-b)(c+d) (a-tc) (6+4)

9.11. y2==13-0 with 1 d.f,, highly significant
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- (a-+b)(a+<) _i_—_'_i‘ﬂi_l — 14, from
n n

9.12. From Exercise 10, | a

SOLUTIONS TO PROBLEMS

which formula follows as in that Exercise.
x2 == 10-5 with 1 d.f., highly significant.

CHAPTER 2
2.1. Put A=E, , or E,, write down addition law for Ey ooy By, A

CuarTER 10 and then substitute back for A.

If in doubt, try n==3 first.

10.1. -1966--0055 > . i

. . - . 0010 ---0007 2.2. Use generalised Venn diagram (see Fig. 2).
10.2. ((5732223?;:;:60005, (b) -02244--0005, (c) + 000GH3 = B < o06an
:g.i. 208;{::}}:0 million 2.4. Brothers -59, unrelated men -38
10:5: (a) -75+4-1-28, (b) 2-33 4-1-43, (¢) 1:58 4--88 2.5- Purple-flowered Red-flowered
10.6. 1-38 << 0 < 365 Long pollen 1(2-1-9) H1-9)
10.7. (a) 15-40+3-11, (b) 2-00--3-21 Round pollen 31— 6) 10
10.8. -899 2.6. (a) 15/128, (b) 3/16

2.7. -096, -497, -407

CuapreEr 12

CHAPTER 3
12.1. Sx; =25, By, =262, Taf = 75, Exy; = 454, Ty} — 3604; hence 3. (@) e() =474, (0) (1) =2, 0 <y < L.
FRARES i PR e Yo s @)= (T Gt =m0y <
. ];:st:ﬁ;;?%gtraight line is: y = 6-64-}-3-84x. 33 g()) =3y tor 0 <<y < 1, g(y) =}y tforl <y<4.

35 hw)=u, 0 Cu<<], h() =2—u, 1 Lu<?2

36. M) =} 0<<u<< Lh(w) =4u2, ICu< 0

3-7. If ship lies in cocked hat when errors are t, 6, and 6, it will also
lie in cocked hat when errors are — 61, — 0y and — 6, but not when
only some of the signs are changed; hence ship will lie in 2 of the 8
equally likely cocked hats formed from +0,, -0, +-0,.

. 255% miles

12.3. B==3-844-67, a —6-64+1-16
12.4. » == 9-010-4-315x, x = 12-368---452y
5. 345 << p << 407

::g ¥ = —Fé)l,\tz v/ (n—2)/v/ (1 —12) =2-17 with 8 degrees-qffrecdon},
which is not significant at the 5 per cent level if a two-tailed test is |
used. A positive correlation is expected since (1) the responses to 5.8
the two drugs are measured from the seme control period of sleep,
(2) some patients are likely to be more responsive to both drugs than CHAPTER 4

others. 4.1. Equality holds if g(x)/h(x) == constant.

4.2. (a) g(x) == Vf (x), h(x) = (x— p)2v/f (%),
(6) &(x) = (x—p) VIf (%), h(x) = (x— p)2y/f (%)
4-3. mean = }(u,}-p.), variance = o2--}(p, — #2)?, skewness —=

2(/"1“#2)2 . .
=" bimodal if - > 2.
[402+(#1“P«Z)2]2 I i ba ' ¢

)

kurtosis = 3 —

4.4. (a) If x), x,, x5 are three observations in ascending order and if ¢ lies
between x; and x;, then | x; — ¢f 4| x5~ ¢ || *y— €| == xg— x| %9 — ],
; which is a minimum when ¢ —#,. This argument can be extended
to any number of observations; for an even number there is a
; minimum for any value of ¢ between the two middle observations.
(6) Zlxi—c)? == B[(x;— %) — (¢~ )12 = Z(x,~ %) F-n(c~z)*
which is a minimum when ¢ =z."
4.5. Write g(x) = (x— p)2, a = k202,

e b i
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CHAPTER 5

5.1, pa(X1) == pg(X) +pua(¥)
pa(X+Y) = pg(X) Fpa(¥) F6p2(X) - pa(T)
5.2, p=hlk. E(¥—X)2=2V(¥)(1—-p)
5.5. Estimate of g = 31-99 ft/sec?; §ta.ndard error == -036
5.8. If ¢ stands for coefficient of variation,

o(1) == 3 Ve (p)Fer(s1) Fe2(d) +e2(s2)
CUAPTER 6

6.1. G(s) = (Q(+Ps)", prey=nn—1) ... (n—r1)P"

6.2. G(S) =" 1), Bl = ‘ur. . o

6.5. If number of nests per unit area is d, then the proloabxhty“thatz tl-lere
will be no nests within a distance x of some fixed point is ¢ ’1"" since
the area of the circle with radius x is 7x2%, and the probabll.lty that
there will be a nest between x and x-}-dx units is 27 Axdx, since the

area of the annulus is 27xdx. Hence the density function of X, the

distance of the nearest nest, is ¢~ *™* 2. x, and the density function
of == X2 is dme ™ *™.

6.7. Find the number of ways of drawing x balls out of R red balls and
of simultaneously drawing (n—x) balls out of (N :—R) black balls,
and divide it by the total number of ways of drawing n balls out of
N balls.

0 i 2 3
P(x) (binomial) -216 432 -288 -064
P(x) (hypergeometric) 167 -500 -300 -033

6.8. E(Z0) — P, V() = PQ, Cov (3, Z;) = —PQIN=1).

In Problem 6.7, mean = 1-2, variance = 72 (with replacement),
== -56 (without replacement).

6.9. G(s) =P[(1 = Qs), ppr1= H(Q/P)y == Q P, ps = QJP?,
skewness = (Q+1)/v Q.

6.10. Cov (X, X;) = —nP;P;.

CHAPTER 7
7.3. If X = TX,, E(X,) =0, E(X]) = p,, show, by expanding (X, +Xs..
4-X,)r and taking Expected values, that E(X3) =npg, E(X%) =
npat-3n(n= Dyl ) N
7.6. Error =P[Y 2 rX & X < 0]-P[Y <<rX & X < 0].\:v.1c is less in
absolute magnitude than the sum of these probabilities, which is
P[X < 0].

CHAPTER 8

#a
8.4. V(52) ::‘-‘;lé (n=1)2= = (1= 1)(n=3),
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8.6. g(v) = 2f Mo/ "L~V 4( 1) 0o <
For the density function of 7, see p. 133
8.7. See p. 135

8.5. Cov (52, %) = (—nn:D,,

b4 . bq
8.8. mean = - variance == ———— "1
g (92 (p+a+1)

8.9. G(s) == P*/(1 - Qs)", mean = nQ /P, variance == nQ P2,
[Note that the p.g.f. is the nth power of the p.-g.f. of the geometric
distribution found in Problem 6.9; it follows that, if z is an integer,
the negative binomial distribution can be interpreted as the distribution
of the sum of n independent geometric variables, or as the waiting
time until the nth success. ]
By equating the observed with the theoretical mean and variance in
Table 15 on p. 96, we find P =68, Q — 32, n== 1, so that the
negative binomial is in this case the geometric distribution.
No. of accidents 0 1 2 3 4 5
Expected no. of women 440 141 45 14 5 1

CHAPTER 9
9.1. n=29, c =2-368
9.3. (a) P=-00047, (b) P==-00054. The one-tailed test is appropriate
since we can predict beforehand that the degree of concordance will

be at least as high in monozygotic as in dizygotic twins; note the
asymmetry of the tails,

94. xiey=114, 05 <P < .10

Cuaprter 10

X0.X. (a—pb)? < t*%2(c;+-p2cy — 2pcy), where t* is the appropriate percen-
tage point of the ¢ distribution with f degrees of freedom.
p=3-1141-02

CuapTER 11
Ir.1. median follows Beta distribution with p = ¢ = }(n-1), mean = },

1

variance == Z?‘Z) compared with approximate value of —.
n

11.2. Estimator Mean Median  (n--1)p/(2n}-1)
Variance w w w
3(2n-1) (Zn+43)  (2n-+1)(2n1-3)
11.3. fl=— p log g, V(fl) == (¢"*—1)/nx?, which is a minimum when

px==1-6; x should be chosen so that there are between 1 and 2
organisms per sample.
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I1.4.

11.6.

11.7.

I2.1.

12.6.

12.7.

PRINCIPLES OF STATISTICS

l 2 - . .
w; == "3 | Z(1/o;), minimum variance == 1/2(1/0%).
a,

Zn,; sum of all observations
Ty = Tn;  Total number of observations
| 4 2) = —1— —1 — —1 1-—- ___n—l , which can be calculated if we
nM aNIM N N—-1

assume that m/nM = N

95 per cent confidence limits for N are 641 to 2,268.

M{M—1\ (N—M\ [(N-1 3
P<">=ﬁ(m_1)(n_m)/(n_1) s Nme i

V) _ mm )NV 42)
i Ere = TG o)
(To perform the summation note that LP(n)=1.)

n(M+-1)

(M—,fm+1)(N+1)(N—M)

m(M-+2)
{) = -784, 95 per cent confidence limits -758 —-810, hence 95 per cent
confidence limits for x are -100—-129.

E(n) =

—1 is an unbiased estimator of N with variance

CuaPTER 12

(x n+1wx) A
[1+ R TP Z(xy—x)?
estimate ¢% by residual mean square with (n—2) degrees of freedom,
and hence place a confidence interval on y,4,.

E(S2) = n Y (pi—p)24(k—1)0?, where p==Zp/k

E(S2) = k(n—1)0?
If u’s are equal, the ratio
_ SHG=1)
- SEk(n— )
should follow the F distribution with (k—1) and k(rn— 1) degrees of
freedom.
S,% =29.9
§2 = 50.9
I' —= 6.16 with 6 and 63 degrees of freedom, highly significant.

V(}’n+1—)’:+ )=
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INDEX

Addition, law of, 12-15, 27
Analysis of variance, 216, 229
Averages, law of, 87

Bayesian methods, 169-176
Behrens-Fisher problem, 177
Bertrand’s paradox, 9
Beta distribution, 137, 172
Binomial distribution, 81-go

normal approximation, 117-r19,

123

in significance tests, 139-145

Bridge, 26, 28

Capture-recapture sampling, 207
Cauchy distribution, 43, 116, 123,
134, 191
Cauchy-Schwarz inequality, 67, 78,
204
Central limit theorem, 115-120, 123,
152
Change of variable, 42-44
x? distribution, 124-129
of goodness of fit, 156-160
of variance, 129-132, 214-217,
227, 229
x? test, 154-161
Coin tossing data, 2, 82
Comb-growth in capons, 210-211,
215-216
Confidence interval, 165-169
correlation coefficient, 224-225
mean, 167-168
Poisson distribution, 185
proportion, 167, 185
ratio, 186
regression coefficient, 214

standard deviation, 185
variance, 185, 195
Counsistency, 189
Contingency table, 155-161
Correlation, 73-75, 221-225
Covariance, 73-75
matrix, 204-205
mean and variance, 137
multinomial distribution, 107
slope and intercept, 214, 226
Craps, 21-22

D’Alembert’s paradox, g-10

De Méré’s problem, 26

Decision theory, 180-185

Degrees of freedom, 124-137
see also 2, F, ¢ tests elc.

Delta technique, 79

Dice data, 18-22, 104

Efficiency, 190-193, 199
Estimation, theory of,
226-229
see also consistency, efficiency,
least squares, maximum likeli-
hood, minimum variance, suffi-
ciency, unbiased
Exclusive events, 12-15
Expected values, 68-80
Exponential distribution,
106, 126

188-218,

97-103,

F distribution, 135-136

F test, 216, 229

Fiducial inference, 176-179

F réquency distribution, 29
a~-particles, 94-95, 9g-101
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Frequency distribution—cont.

accidents, g5-96

beans, 159

beet leaf-hoppers, 96

blood cells, g7, 159-160

boys in family, 88-8g

coin weight, 33-37, 59-60

dice, 20, 104

head length and breadth, 40-41,
221-222

heads in coin-tossing, 82

height, 113-115, 218-221.

horse-kicks, g2-93

litter size, 2g-30

muscle fibre discharges, 101

vegetable marrows, 117

yeast cells, 93-94

Geometric distribution, 107

Hardy-Weinberg law, 27

Histogram, 34-35, 40

Hypergeometric distribution, 106,
207

Independence, 16, 25, 27, 38-41
of mean and variance, 131
test for, 155-164

Indifference, principle of, 8-11

Information, 205, 208

Interquartile range, 55
normal distribution, 58, 66

uniform distribution, 56
Inverse sampling, 207

Kurtosis, 63-65, 167-168
of mixture, 67
of sum, 78, 123
inequalities, 64, 67
see also individual distributions

Lagrangian multiplier, 206, 228
Least squares, 210-221, 226-228
Markov theorem, 228

Likelihood, 169-176, 192
maximum, 197-205, 208
Linear function, distribution of, 43,
70, 72-73, 76
see also binomial, Cauchy, x?
normal and Poisson distribu-
tions
Linkage, 25, 28, 208
Lognormal distribution, 117

Mean, 45-47, 51-54, 68-73
confidence interval, 167-168
estimation, 51-54, 189-193
sampling distribution, 119-120
variance of, 120
see also individual distributions

Mean deviation, 54, 67, 197
normal distribution, 58, 123
uniform distribution, 55

Median, 47-49, 51-54
x? distribution, 126
estimation, 51-54, 189-193
exponential distribution, 98
sampling distribution, 18g-191,

206
variance of, 190, 206
Mendel’s laws of heredity, 22-25,
28, 208
Minimax strategy, 181
Minimum variance estimate, 192,
203-204
Mode, 49-51
x? distribution, 59-61
exponential distribution, 98
multimodal distributions, 59-61
Moment generating function, 75-77
see also individual distributions
Moments, 61-65, 68-73
factorial, 8o, 105
Multinomial distribution, 107, 157,
208
Multiplication, law of], 15-17, 27
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Negative binomial distribution, 138

Non-parametric tests, 1 53-154

Normal distribution, 108-1 23
bivariate, 228

Null hypothesis, 141, 166-1 69

One-tailed test, 142-1 43, 149, 153
Orthogonal transformation, r2 7-131

Parameter, 47
Poisson distribution, 90-97, 101-103,
105
estimation, 1g6-202
normal approximation, 119, 123
Poker, 28
Power, 141-142
Probability,
conditional, 16-1%
inductive, 5-11, 169-179
laws of, 12-28
prior and posterior, 169-179
statistical, 1-8
Probability density function, gs,
40-41
Probability distribution, 20-44
Probability function, 30-32, 38-39
cumulative, 32-33, 36-37
Probability generating function, 7g,
105, 107, 138
Product, variance of, 79

Quartiles, 55

Random variable, 29-44

Ratio, distribution of, 43-44, 79
see also Beta, F and ¢ distri-
butions

Regression, 209-230
mean square, 229

Robustness, 153

Sampling distribution, 119-120, 129-
132

see also mean, median, regression,
variance
Sex ratio, 2-3, 88-8g
Sheppard’s correction, 66
Significance tests, 139-169
combination of, 164
contingency tables, 155-164
correlation, 224-225
Fisher’s exact, 164
goodness of fit, 154-161
mean, 145-154
median, 153
proportion, 139-145
regression, 214-218
variance ratio, 216, 229
se¢ also x*, F, t, non-parametric,
one-tailed, power
Skewness, 61-63
of sum, 78, 123
see also individual distributions
Soporific drugs, 149
Standard deviation, 56-59, 67
see also variance
Statistic, 47
Stillbirth and sex, 13-14, 16-17, 155,‘
161
Stochastic process, 103
birth process, 103, 106
Succession, Laplace’s law of, 186
Sufficiency, 196-197, 199, 201

¢ distribution, 132-135

t test, 145-154
"Tchebychef’s inequality, 67
Triangular distribution, 76

Unbiased estimate, 130, 192

Uniform  distribution, g%-38, 42,
47, 55, 56, 58, 64, 66, 71, 75,
206

Variance, 56-59, 68-73
confidence interval, 195
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Variance—cont.
estimation of, 193-197
of correlation coefficient, 225
of mean, 120
of median, 1go, 206
of product, ratio, 78-79
of regression coefficient, 214, 226-
228
of sum, 72-73

of variance, 147

sampling distribution, 129-132,
137

see also individual distributions

Yarborough, 16
Yates’ correction, 163

z transformation, 225




